Investigation on the effects of torque converter blade thickness based on FSI simulation

Cheng Liu*, Meng Guo, Wei Wei, Qingdong Yan, Pengyu Li

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

A lot of efforts were put into the design of torque converter blade angles and the analysis of transient flow behaviors; yet little is known about the influence of the blade thickness distribution on the performance or structural response of a torque converter. This study proposed a parameterized blade thickness design model and analyzed the effects of the blade thickness on hydrodynamic performance and structural response using fluid-structure interaction (FSI) models. Both one-way FSI model and two-way FSI model were built and evaluated against test data, and it was found that the transient two-way FSI model outperformed the steady-state FSI model in terms of both flow and structure simulations. It was found that the stall torque ratio and peak efficiency exhibited positive correlations with blade thicknesses, whereas the stall capacity constant was inversely related to blade thicknesses. Both numerical and experimental results suggested that the pump-turbine interaction induced serious flow fluctuations, and FSI simulations were required in the design process to avoid potential resonance.

Original languageEnglish
Title of host publicationFluid Applications and Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859049
DOIs
Publication statusPublished - 2019
EventASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019 - San Francisco, United States
Duration: 28 Jul 20191 Aug 2019

Publication series

NameASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
Volume3A-2019

Conference

ConferenceASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
Country/TerritoryUnited States
CitySan Francisco
Period28/07/191/08/19

Keywords

  • Blade thickness design
  • FSI simulation
  • Flow induced vibration

Fingerprint

Dive into the research topics of 'Investigation on the effects of torque converter blade thickness based on FSI simulation'. Together they form a unique fingerprint.

Cite this