Investigation of an asymmetric double entry centrifugal compressor with different radial impellers matching for a wide operating range

Lei Jing, Ce Yang, Wangxia Wu, Shan Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

The work presented here investigates the impeller matching characteristics and widens the stable operating range of front and rear impellers for an asymmetric entry double sided centrifugal compressor. A numerical approach is employed to analyze the operating characteristics of front and rear impellers, and a strategy to widen the stable operating range of double sided compressor is presented. Firstly, the performance curves of a double sided centrifugal compressor are obtained by simulating the operation of the whole-stage compressor. The result shows that the compressor operating mode switches from parallel mode to single impeller mode automatically with the decrease of the mass flow. Thus, the stable operating range of the compressor is limited. Second, the simulation of a simplified double sided compressor is conducted to reveal the mechanism of the compressor operating mode conversion. It is found that the essential reason for the conversion of the compressor operating mode is the total pressure difference between the front and rear impeller inlets. A proper increase of the rear impeller radii is helpful for improving the impeller power capability, which enables the front and rear impeller to obtain a superior matching relationship in a wider operating range and widens the stable operating range of the compressor. Furthermore, by analyzing the respective performance characteristic curves in various calculation cases, there is a critical mass flow value between the front and rear impellers for compressors with the same flow capability. When one side impeller mass flow is below the critical value, with further decrease of the flow, the pressure ratio characteristic curve of this side rises and enters the stall zone gradually. Thus, the operating mode is converted from parallel mode to single mode. This result further explains the mechanism for extending the stable operating range of a double sided compressor in a wider scope.

Original languageEnglish
Title of host publicationTurbomachinery
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791856659, 9780791856659
DOIs
Publication statusPublished - 2015
EventASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015 - Montreal, Canada
Duration: 15 Jun 201519 Jun 2015

Publication series

NameProceedings of the ASME Turbo Expo
Volume2C

Conference

ConferenceASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015
Country/TerritoryCanada
CityMontreal
Period15/06/1519/06/15

Fingerprint

Dive into the research topics of 'Investigation of an asymmetric double entry centrifugal compressor with different radial impellers matching for a wide operating range'. Together they form a unique fingerprint.

Cite this