Abstract
The structure of materials in supercapacitors plays great importance in facilitating fast ion transport. Herein, we incorporated two-dimensional Cu-oxide nanosheets (2D NSs) in one-dimensional Zn-Ni-Co-oxide nanowire arrays (1D NWAs) on three-dimensional (3D) substrate. The integrated CuO/Zn-Ni-Co oxide electrode material exhibited a high specific capacity of 1261C g−1 at a current density of 1 A g−1 and retained 92.2% of its capacity after 20,000 cycles. Density functional theory-based calculations were employed to validate the structural and electronic properties of the prepared materials. Moreover, the hybrid supercapacitor (HSC) device was engineered by using the as-prepared CuO/Zn-Ni-Co oxide electrode material as a positive and integrated functionalized multi wall carbon nanotubes (MWCNTs-COOH), activated carbon (AC), and reduced graphene oxide (rGO) as negative electrode. We highlighted the variance in using two different equations for energy density calculations. The HSC device delivered a high energy density of 74 Wh kg−1 at a power density of 1.02 kW kg−1. We also demonstrated illumination of multiple color LEDs for >600 s. The eye-catching results demonstrated that the integrated and structured 2D NSs/1D NWAs based CuO/Zn-Ni-Co oxide from materials can be used for practical applications.
Original language | English |
---|---|
Article number | 127570 |
Journal | Chemical Engineering Journal |
Volume | 413 |
DOIs | |
Publication status | Published - 1 Jun 2021 |
Externally published | Yes |
Keywords
- Energy density
- Metal substitution
- Mixed metal oxide
- Nanosheet
- Nanowire array