TY - JOUR
T1 - Instance Segmentation in the Dark
AU - Chen, Linwei
AU - Fu, Ying
AU - Wei, Kaixuan
AU - Zheng, Dezhi
AU - Heide, Felix
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023/8
Y1 - 2023/8
N2 - Existing instance segmentation techniques are primarily tailored for high-visibility inputs, but their performance significantly deteriorates in extremely low-light environments. In this work, we take a deep look at instance segmentation in the dark and introduce several techniques that substantially boost the low-light inference accuracy. The proposed method is motivated by the observation that noise in low-light images introduces high-frequency disturbances to the feature maps of neural networks, thereby significantly degrading performance. To suppress this “feature noise”, we propose a novel learning method that relies on an adaptive weighted downsampling layer, a smooth-oriented convolutional block, and disturbance suppression learning. These components effectively reduce feature noise during downsampling and convolution operations, enabling the model to learn disturbance-invariant features. Furthermore, we discover that high-bit-depth RAW images can better preserve richer scene information in low-light conditions compared to typical camera sRGB outputs, thus supporting the use of RAW-input algorithms. Our analysis indicates that high bit-depth can be critical for low-light instance segmentation. To mitigate the scarcity of annotated RAW datasets, we leverage a low-light RAW synthetic pipeline to generate realistic low-light data. In addition, to facilitate further research in this direction, we capture a real-world low-light instance segmentation dataset comprising over two thousand paired low/normal-light images with instance-level pixel-wise annotations. Remarkably, without any image preprocessing, we achieve satisfactory performance on instance segmentation in very low light (4% AP higher than state-of-the-art competitors), meanwhile opening new opportunities for future research. Our code and dataset are publicly available to the community (https://github.com/Linwei-Chen/LIS).
AB - Existing instance segmentation techniques are primarily tailored for high-visibility inputs, but their performance significantly deteriorates in extremely low-light environments. In this work, we take a deep look at instance segmentation in the dark and introduce several techniques that substantially boost the low-light inference accuracy. The proposed method is motivated by the observation that noise in low-light images introduces high-frequency disturbances to the feature maps of neural networks, thereby significantly degrading performance. To suppress this “feature noise”, we propose a novel learning method that relies on an adaptive weighted downsampling layer, a smooth-oriented convolutional block, and disturbance suppression learning. These components effectively reduce feature noise during downsampling and convolution operations, enabling the model to learn disturbance-invariant features. Furthermore, we discover that high-bit-depth RAW images can better preserve richer scene information in low-light conditions compared to typical camera sRGB outputs, thus supporting the use of RAW-input algorithms. Our analysis indicates that high bit-depth can be critical for low-light instance segmentation. To mitigate the scarcity of annotated RAW datasets, we leverage a low-light RAW synthetic pipeline to generate realistic low-light data. In addition, to facilitate further research in this direction, we capture a real-world low-light instance segmentation dataset comprising over two thousand paired low/normal-light images with instance-level pixel-wise annotations. Remarkably, without any image preprocessing, we achieve satisfactory performance on instance segmentation in very low light (4% AP higher than state-of-the-art competitors), meanwhile opening new opportunities for future research. Our code and dataset are publicly available to the community (https://github.com/Linwei-Chen/LIS).
KW - Feature denoising
KW - Instance segmentation
KW - Low-light image dataset
KW - Object detection
UR - http://www.scopus.com/inward/record.url?scp=85160306242&partnerID=8YFLogxK
U2 - 10.1007/s11263-023-01808-8
DO - 10.1007/s11263-023-01808-8
M3 - Article
AN - SCOPUS:85160306242
SN - 0920-5691
VL - 131
SP - 2198
EP - 2218
JO - International Journal of Computer Vision
JF - International Journal of Computer Vision
IS - 8
ER -