Inoue surfaces and the Chern–Ricci flow

Shouwen Fang, Valentino Tosatti, Ben Weinkove*, Tao Zheng

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 21
  • Captures
    • Readers: 4
see details

Abstract

We investigate the Chern–Ricci flow, an evolution equation of Hermitian metrics, on Inoue surfaces. These are non-Kähler compact complex surfaces of type Class VII. We show that, after an initial conformal change, the flow always collapses the Inoue surface to a circle at infinite time, in the sense of Gromov–Hausdorff.

Original languageEnglish
Pages (from-to)3162-3185
Number of pages24
JournalJournal of Functional Analysis
Volume271
Issue number11
DOIs
Publication statusPublished - 1 Dec 2016
Externally publishedYes

Keywords

  • Chern–Ricci flow
  • Class VII surfaces
  • Inoue surfaces

Fingerprint

Dive into the research topics of 'Inoue surfaces and the Chern–Ricci flow'. Together they form a unique fingerprint.

Cite this

Fang, S., Tosatti, V., Weinkove, B., & Zheng, T. (2016). Inoue surfaces and the Chern–Ricci flow. Journal of Functional Analysis, 271(11), 3162-3185. https://doi.org/10.1016/j.jfa.2016.08.013