TY - JOUR
T1 - Influence of Sn doping on the phase formation and superconductivity of FeSe0.93
AU - Chen, Ning
AU - Ma, Zongqing
AU - Liu, Yongchang
AU - Li, Xiaoting
AU - Cai, Qi
AU - Li, Huijun
AU - Yu, Liming
PY - 2014/3/5
Y1 - 2014/3/5
N2 - Sn doped FeSe0.93 bulk samples were prepared by solid-state reaction in Ar atmosphere. The result suggests that Sn does not actually enter the crystal lattice of β-FeSe, existing as an inclusion SnSe instead. Although the existence of impurities such as Fe7Se8, Fe3O4 and SnSe is harmful to the superconductivity of β-FeSe, the Tc of the Sn doped FeSe0.93 samples is not suppressed compared to the undoped one, quite different from previous studies on the metal doped FeSe superconductors. According to the thermal analysis, Sn was firstly melt and then reacted with Se forming SnSe. The presence of SnSe can obviously accelerate the subsequent formation of iron selenide. XRD result indicates that Sn addition can also promote the growth of β-FeSe grains along (0 0 1), (1 0 1), (1 1 2) crystal planes and expedites the transformation from Fe7Se8 to β-FeSe, the superconducting phase. Morphology observation also displays enlarged β-FeSe grains and their better connection with each other in the Sn doped samples. All the factors mentioned above are contributed to the relative high Tc of Sn-doped FeSe0.93 samples. The present work suggests that Sn might be a promising element to improve the superconductivity of FeSe 1-x if the amount of addition as well as the sintering process is further optimized.
AB - Sn doped FeSe0.93 bulk samples were prepared by solid-state reaction in Ar atmosphere. The result suggests that Sn does not actually enter the crystal lattice of β-FeSe, existing as an inclusion SnSe instead. Although the existence of impurities such as Fe7Se8, Fe3O4 and SnSe is harmful to the superconductivity of β-FeSe, the Tc of the Sn doped FeSe0.93 samples is not suppressed compared to the undoped one, quite different from previous studies on the metal doped FeSe superconductors. According to the thermal analysis, Sn was firstly melt and then reacted with Se forming SnSe. The presence of SnSe can obviously accelerate the subsequent formation of iron selenide. XRD result indicates that Sn addition can also promote the growth of β-FeSe grains along (0 0 1), (1 0 1), (1 1 2) crystal planes and expedites the transformation from Fe7Se8 to β-FeSe, the superconducting phase. Morphology observation also displays enlarged β-FeSe grains and their better connection with each other in the Sn doped samples. All the factors mentioned above are contributed to the relative high Tc of Sn-doped FeSe0.93 samples. The present work suggests that Sn might be a promising element to improve the superconductivity of FeSe 1-x if the amount of addition as well as the sintering process is further optimized.
KW - Iron selenium superconductors
KW - Sintering
KW - Sn doping
UR - http://www.scopus.com/inward/record.url?scp=84890103612&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2013.11.121
DO - 10.1016/j.jallcom.2013.11.121
M3 - Article
AN - SCOPUS:84890103612
SN - 0925-8388
VL - 588
SP - 418
EP - 421
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
ER -