In-situ X-ray computed tomography tensile tests and analysis of damage mechanism and mechanical properties in laser powder bed fused Invar 36 alloy

Qidong Yang, Shuo Yang, Shiyu Ma, Junhan Zhou, Ye Zhou, Rongzheng Huang, Kai Wei*, Zhaoliang Qu, Xujing Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Laser powder bed fusion (LPBF) is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry. Whereas it inevitably introduces specific microstructures and pore defects, which will further influence the mechanical properties. Hence, aiming at exploring the LPBF process-related microstructures and pore defects, and especially their influences on the damage mechanism and mechanical properties, Invar 36 alloy was manufactured by LPBF under designed different laser scanning speeds. The microstructure observations reveal that higher scanning speeds lead to equiaxed and short columnar grains with higher dislocation density, while lower scanning speeds result in elongated columnar grains with lower dislocation density. The pore defects analyzed by X-ray computed tomography (XCT) suggest that the high laser scanning speed gives rise to numerous lamellar and large lack-of-fusion (LOF) pores, and the excessively low laser scanning speed produces relatively small keyhole pores with high sphericity. Moreover, the in-situ XCT tensile tests were originally performed to evaluate the damage evolution and failure mechanism. Specifically, high laser scanning speed causes brittle fracture due to the rapid growth and coalescence of initial lamellar LOF pores along the scanning direction. Low laser scanning speed induces ductile fracture originating from unstable depressions in the surfaces, while metallurgical and keyhole pores have little impact on damage evolution. Eventually, the process-structure-property correlation is established. The presence of high volume fraction of lamellar LOF pores, resulting from high scanning speed, leads to inferior yield strength and ductility. Besides, specimens without LOF pores exhibit larger grain sizes and lower dislocation density at decreased scanning speeds, slightly reducing yield strength while slightly enhancing ductility. This understanding lays the foundation for widespread applications of LPBF-processed Invar 36 alloy.

Original languageEnglish
Pages (from-to)29-46
Number of pages18
JournalJournal of Materials Science and Technology
Volume175
DOIs
Publication statusPublished - 10 Mar 2024

Keywords

  • Invar 36 alloy
  • Laser powder bed fusion
  • Mechanical property
  • Microstructure
  • Pore defects
  • X-ray tomography in-situ tensile test

Fingerprint

Dive into the research topics of 'In-situ X-ray computed tomography tensile tests and analysis of damage mechanism and mechanical properties in laser powder bed fused Invar 36 alloy'. Together they form a unique fingerprint.

Cite this