Abstract
The cycle life of high-energy-density lithium−sulfur (Li−S) batteries is severely plagued by the incessant parasitic reactions between Li metal anodes and reactive Li polysulfides (LiPSs). Encapsulating Li-polysulfide electrolyte (EPSE) emerges as an effective electrolyte design to mitigate the parasitic reactions kinetically. Nevertheless, the rate performance of Li−S batteries with EPSE is synchronously suppressed. Herein, the sacrifice in rate performance by EPSE is circumvented while mitigating parasitic reactions by employing hexyl methyl ether (HME) as a co-solvent. The specific capacity of Li−S batteries with HME-based EPSE is nearly not decreased at 0.1 C compared with conventional ether electrolytes. With an ultrathin Li metal anode (50 μm) and a high-areal-loading sulfur cathode (4.4 mgS cm−2), a longer cycle life of 113 cycles was achieved in HME-based EPSE compared with that of 65 cycles in conventional ether electrolytes at 0.1 C. Furthermore, both high energy density of 387 Wh kg−1 and stable cycle life of 27 cycles were achieved in a Li−S pouch cell (2.7 Ah). This work inspires the feasibility of regulating the solvation structure of LiPSs in EPSE for Li−S batteries with balanced performance.
Original language | English |
---|---|
Article number | e202318785 |
Journal | Angewandte Chemie - International Edition |
Volume | 63 |
Issue number | 10 |
DOIs | |
Publication status | Published - 4 Mar 2024 |
Keywords
- encapsulating lithium-polysulfide electrolyte
- lithium−sulfur batteries
- pouch cell
- rate performance
- solvation