Improving Autism Spectrum Disorder Prediction by Fusion of Multiple Measures of Resting-State Functional MRI Data

Lingyan Liang, Gang Dong, Changsheng Li, Dongchao Wen, Yaqian Zhao, Jing Li*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition characterized by social communication, language and behavior impairments. Leveraging deep learning to automatically predict ASD has attracted more and more attention in the medical and machine learning communities. However, how to select effective measure signals for deep learning prediction is still a challenging problem. In this paper, we studied two kinds of measure signals, i.e., regional homogeneity (ReHo) and Craddock 200 (CC200), which both represents homogeneous functional activity, in the framework of deep learning, and designed a new mechanism to effectively joint them for deep learning based ASD prediction. Extensive experiments on the ABIDE dataset provide empirical evidence in support of effectiveness of our method. In particular, we obtained 79% in terms of accuracy by effectively fusing these two kinds of signals, much better than any single-measure model (ReHo SM-model: ∼69% and CC200 SM-model: ∼70%). These results suggest that leveraging multi-measure signals together are effective for ASD prediction.

Original languageEnglish
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1851-1854
Number of pages4
ISBN (Electronic)9781728127828
DOIs
Publication statusPublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: 11 Jul 202215 Jul 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period11/07/2215/07/22

Fingerprint

Dive into the research topics of 'Improving Autism Spectrum Disorder Prediction by Fusion of Multiple Measures of Resting-State Functional MRI Data'. Together they form a unique fingerprint.

Cite this