Abstract
Recently, the difference and sum (diff-sum) coarray has attracted much attention in one-dimensional direction-of-arrival estimation for its high degrees-of-freedom (DOFs). In this paper, we utilize both the spatial information and the temporal information to construct the diff-sum coarray for planar sparse arrays. The diff-sum coarray contains both the difference coarray and the sum coarray, which provides much higher DOFs than the difference coarray alone. We take a planar coprime array consisting of two uniform square subarrays as the array model. To fully use the aperture-extending ability of the diff-sum coarray, we propose two novel configurations to improve the planar coprime array. The first configuration compresses the inter-element spacing of one subarray and results in a larger consecutive area in the coarray. The second configuration rearranges the two subarrays and introduces a proper separation between them, which can significantly reduce the redundancy of the diff-sum coarray and increase the DOFs. Besides, we derive the closed-form expressions of the central consecutive ranges in the coarrays of the proposed array configurations. Simulations verify the superiority of the proposed array configurations.
Original language | English |
---|---|
Article number | 273 |
Journal | Electronics (Switzerland) |
Volume | 9 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2020 |
Keywords
- Degrees of freedom
- Direction-of-arrival estimation
- Planar coprime array
- Virtual array