TY - JOUR
T1 - Implications of Activating the ANT2/mTOR/PGC-1α Feedback Loop
T2 - Insights into Mitochondria-Mediated Injury in Hypoxic Myocardial Cells
AU - Zhang, Meng
AU - Yang, Yuanzhan
AU - Zhu, Zhu
AU - Chen, Zixuan
AU - Huang, Dongyang
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/11
Y1 - 2023/11
N2 - Mitochondrial dysfunction is known to play a critical role in the development of cardiomyocyte death during acute myocardial infarction (AMI). However, the exact mechanisms underlying this dysfunction are still under investigation. Adenine nucleotide translocase 2 (ANT2) is a key functional protein in mitochondria. We aimed at exploring the potential benefits of ANT2 inhibition against AMI. We utilized an oxygen–glucose deprivation (OGD) cell model and an AMI mice model to detect cardiomyocyte injury. We observed elevated levels of reactive oxygen species (ROS), disrupted mitochondrial membrane potential (MMP), and increased apoptosis due to the overexpression of ANT2. Additionally, we discovered that ANT2 is involved in myocardial apoptosis by activating the mTOR (mechanistic target of rapamycin kinase)-dependent PGC-1α (PPARG coactivator 1 alpha) pathway, establishing a novel feedback loop during AMI. In our experiments with AC16 cells under OGD conditions, we observed protective effects when transfected with ANT2 siRNA and miR-1203. Importantly, the overexpression of ANT2 counteracted the protective effect resulting from miR-1203 upregulation in OGD-induced AC16 cells. All these results supported that the inhibition of ANT2 could alleviate myocardial cell injury under OGD conditions. Based on these findings, we propose that RNA interference (RNAi) technology, specifically miRNA and siRNA, holds therapeutic potential by activating the ANT2/mTOR/PGC-1α feedback loop. This activation could help mitigate mitochondria-mediated injury in the context of AMI. These insights may contribute to the development of future clinical strategies for AMI.
AB - Mitochondrial dysfunction is known to play a critical role in the development of cardiomyocyte death during acute myocardial infarction (AMI). However, the exact mechanisms underlying this dysfunction are still under investigation. Adenine nucleotide translocase 2 (ANT2) is a key functional protein in mitochondria. We aimed at exploring the potential benefits of ANT2 inhibition against AMI. We utilized an oxygen–glucose deprivation (OGD) cell model and an AMI mice model to detect cardiomyocyte injury. We observed elevated levels of reactive oxygen species (ROS), disrupted mitochondrial membrane potential (MMP), and increased apoptosis due to the overexpression of ANT2. Additionally, we discovered that ANT2 is involved in myocardial apoptosis by activating the mTOR (mechanistic target of rapamycin kinase)-dependent PGC-1α (PPARG coactivator 1 alpha) pathway, establishing a novel feedback loop during AMI. In our experiments with AC16 cells under OGD conditions, we observed protective effects when transfected with ANT2 siRNA and miR-1203. Importantly, the overexpression of ANT2 counteracted the protective effect resulting from miR-1203 upregulation in OGD-induced AC16 cells. All these results supported that the inhibition of ANT2 could alleviate myocardial cell injury under OGD conditions. Based on these findings, we propose that RNA interference (RNAi) technology, specifically miRNA and siRNA, holds therapeutic potential by activating the ANT2/mTOR/PGC-1α feedback loop. This activation could help mitigate mitochondria-mediated injury in the context of AMI. These insights may contribute to the development of future clinical strategies for AMI.
KW - RNA interference
KW - acute myocardial infarction
KW - adenine nucleotide translocase 2
KW - microRNA
KW - oxygen–glucose deprivation
UR - http://www.scopus.com/inward/record.url?scp=85178269088&partnerID=8YFLogxK
U2 - 10.3390/cimb45110543
DO - 10.3390/cimb45110543
M3 - Article
AN - SCOPUS:85178269088
SN - 1467-3037
VL - 45
SP - 8633
EP - 8651
JO - Current Issues in Molecular Biology
JF - Current Issues in Molecular Biology
IS - 11
ER -