Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study

Binbin Wang, Liangshun Luo*, Fuyu Dong, Liang Wang, Hongying Wang, Fuxin Wang, Lei Luo, Baoxian Su, Yanqing Su, Jingjie Guo, Hengzhi Fu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Comparative studies on Zr35Cu65 and Zr65Cu35 amorphous systems were performed using molecular dynamic simulations to explore whether their hydrogenated mechanical behavior depends on the content of hydride-forming elements. Although both of them present an increased strength and ductility after hydrogen microalloying, we observe the improved mechanical behavior for Zr35Cu65 is more pronounced than that for Zr65Cu35. In these two samples, the distribution of configurational potential energy and flexibility volume respectively follows a similar H-induced variation tendency; all of the hydrogenated alloys not just have more stable atoms with smaller flexibility volume, but possess a larger fraction of readily activated atoms. However, the atomic-scale details, based on the local “gradient atomic packing structure” model, indicate minor additions of hydrogen can promote more “soft spots” along with more strengthened “backbones” in the low-Zr alloy than that in the high-Zr sample, which endows the former with much higher strength and deformability after hydrogen microalloying. We regard this finding as a further step forward to distilling the tell-tale metrics of the H-dependent mechanical behavior observed in Zr-based metallic glasses.

Original languageEnglish
Pages (from-to)198-206
Number of pages9
JournalJournal of Materials Science and Technology
Volume45
DOIs
Publication statusPublished - 15 May 2020
Externally publishedYes

Keywords

  • Atomic structure
  • Hydrogen
  • Mechanical behavior
  • Metallic glasses
  • Molecular dynamics

Fingerprint

Dive into the research topics of 'Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study'. Together they form a unique fingerprint.

Cite this