TY - JOUR
T1 - Identification of New Prognostic Genes and Construction of a Prognostic Model for Lung Adenocarcinoma
AU - Chen, Xueping
AU - Yu, Liqun
AU - Zhang, Honglei
AU - Jin, Hua
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/6
Y1 - 2023/6
N2 - Lung adenocarcinoma (LUAD) is a rapidly progressive malignancy, and its mortality rate is very high. In this study, we aimed at finding novel prognosis-related genes and constructing a credible prognostic model to improve the prediction for LUAD patients. Differential gene expression, mutant subtype, and univariate Cox regression analyses were conducted with the dataset from the Cancer Genome Atlas (TCGA) database to screen for prognostic features. These features were employed in the following multivariate Cox regression analysis and the produced prognostic model included the stage and expression of SMCO2, SATB2, HAVCR1, GRIA1, and GALNT4, as well as mutation subtypes of TP53. The exactness of the model was confirmed by an overall survival (OS) analysis and disease-free survival (DFS) analysis, which indicated that patients in the high-risk group had a poorer prognosis compared to those in the low-risk group. The area under the receiver operating characteristic curve (AUC) was 0.793 in the training group and 0.779 in the testing group. The AUC of tumor recurrence was 0.778 in the training group and 0.815 in the testing group. In addition, the number of deceased patients increased as the risk scores raised. Furthermore, the knockdown of prognostic gene HAVCR1 suppressed the proliferation of A549 cells, which supports our prognostic model that the high expression of HAVCR1 predicts poor prognosis. Our work created a reliable prognostic risk score model for LUAD and provided potential prognostic biomarkers.
AB - Lung adenocarcinoma (LUAD) is a rapidly progressive malignancy, and its mortality rate is very high. In this study, we aimed at finding novel prognosis-related genes and constructing a credible prognostic model to improve the prediction for LUAD patients. Differential gene expression, mutant subtype, and univariate Cox regression analyses were conducted with the dataset from the Cancer Genome Atlas (TCGA) database to screen for prognostic features. These features were employed in the following multivariate Cox regression analysis and the produced prognostic model included the stage and expression of SMCO2, SATB2, HAVCR1, GRIA1, and GALNT4, as well as mutation subtypes of TP53. The exactness of the model was confirmed by an overall survival (OS) analysis and disease-free survival (DFS) analysis, which indicated that patients in the high-risk group had a poorer prognosis compared to those in the low-risk group. The area under the receiver operating characteristic curve (AUC) was 0.793 in the training group and 0.779 in the testing group. The AUC of tumor recurrence was 0.778 in the training group and 0.815 in the testing group. In addition, the number of deceased patients increased as the risk scores raised. Furthermore, the knockdown of prognostic gene HAVCR1 suppressed the proliferation of A549 cells, which supports our prognostic model that the high expression of HAVCR1 predicts poor prognosis. Our work created a reliable prognostic risk score model for LUAD and provided potential prognostic biomarkers.
KW - A549
KW - HAVCR1
KW - TCGA
KW - lung adenocarcinoma
KW - prognostic model
UR - http://www.scopus.com/inward/record.url?scp=85161743608&partnerID=8YFLogxK
U2 - 10.3390/diagnostics13111914
DO - 10.3390/diagnostics13111914
M3 - Article
AN - SCOPUS:85161743608
SN - 2075-4418
VL - 13
JO - Diagnostics
JF - Diagnostics
IS - 11
M1 - 1914
ER -