Abstract
Hypervelocity penetration experiments were performed on semi-infinite concrete targets with 7 mm-diameter 40CrNiMo steel long-rod projectiles at impact velocities ranging from 2117 m/s to 3086 m/s by using a two-stage combustion light-gas gun. After the experiments, the crater dimensions and penetration depth were carefully measured, also the residual projectiles were recovered. The depth of penetration was found to be greater than the hydrodynamic limit penetration depth. Numerical simulation was conducted to analyze the penetration process, and combined with the experimental results, it was obtained that the head of the long-rod projectile eroded and deformed into a hemisphere during hypervelocity penetration. According to the experimental and numerical simulation results, the penetration model of long-rod projectiles penetrating concrete targets at hypervelocity was constructed based on the Alekseevskii-Tate model. The penetration model was compared with the experimental depths of penetration, showing that the model had good applicability.
Original language | English |
---|---|
Article number | 103742 |
Journal | International Journal of Impact Engineering |
Volume | 148 |
DOIs | |
Publication status | Published - Feb 2021 |
Keywords
- Concrete target
- Hydrodynamic model
- Hypervelocity penetration
- Long-rod projectile