Hyperspectral image reconstruction using a deep spatial-spectral prior

Lizhi Wang, Chen Sun, Ying Fu, Min H. Kim, Hua Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

145 Citations (Scopus)

Abstract

Regularization is a fundamental technique to solve an ill-posed optimization problem robustly and is essential to reconstruct compressive hyperspectral images. Various hand-crafted priors have been employed as a regularizer but are often insufficient to handle the wide variety of spectra of natural hyperspectral images, resulting in poor reconstruction quality. Moreover, the prior-regularized optimization requires manual tweaking of its weight parameters to achieve a balance between the spatial and spectral fidelity of result images. In this paper, we present a novel hyperspectral image reconstruction algorithm that substitutes the traditional hand-crafted prior with a data-driven prior, based on an optimization-inspired network. Our method consists of two main parts: First, we learn a novel data-driven prior that regularizes the optimization problem with a goal to boost the spatial-spectral fidelity. Our data-driven prior learns both local coherence and dynamic characteristics of natural hyperspectral images. Second, we combine our regularizer with an optimization-inspired network to overcome the heavy computation problem in the traditional iterative optimization methods. We learn the complete parameters in the network through end-to-end training, enabling robust performance with high accuracy. Extensive simulation and hardware experiments validate the superior performance of our method over the state-of-the-art methods.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages8024-8033
Number of pages10
ISBN (Electronic)9781728132938
DOIs
Publication statusPublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period16/06/1920/06/19

Keywords

  • Computational Photography
  • Physics-based Vision and Shape-from-X

Fingerprint

Dive into the research topics of 'Hyperspectral image reconstruction using a deep spatial-spectral prior'. Together they form a unique fingerprint.

Cite this