TY - JOUR
T1 - Hydrogen circulation system model predictive control for polymer electrolyte membrane fuel cell-based electric vehicle application
AU - He, Hongwen
AU - Quan, Shengwei
AU - Wang, Ya Xiong
N1 - Publisher Copyright:
© 2019 Hydrogen Energy Publications LLC
PY - 2020/8/7
Y1 - 2020/8/7
N2 - Polymer electrolyte membrane fuel cell (PEMFC) is one of the promising solutions overcoming future energy crisis and environment pollution in the automotive industry. However, PEMFC is vulnerable to the circulation of hydrogen mass flow rate and pressure, which may cause the degradation of the PEMFC's anode components and reduction of output performance over time. Thus, the control of the hydrogen supply system draws attention currently and is critical for the durability and stability of the PEMFC system. In this study, a model predictive control (MPC) approach for hydrogen circulation system is developed to regulate the hydrogen flow circulating. A model of the hydrogen supply system that contains a flow control valve, a supply manifold, a return manifold and a hydrogen circulating pump is firstly developed to describe the behavior of the hydrogen mass flow dynamics in the PEMFC. Subsequently, a hydrogen circulating pump MPC scheme is designed based on the piecewise linearized model of hydrogen circulation as well as the switched MPC controllers. By predicting the pressure of the return manifold and the angle velocity of the pump, the proposed MPC approach can manipulate the hydrogen circulating pump to achieve efficient and stable operation of the PEMFC.
AB - Polymer electrolyte membrane fuel cell (PEMFC) is one of the promising solutions overcoming future energy crisis and environment pollution in the automotive industry. However, PEMFC is vulnerable to the circulation of hydrogen mass flow rate and pressure, which may cause the degradation of the PEMFC's anode components and reduction of output performance over time. Thus, the control of the hydrogen supply system draws attention currently and is critical for the durability and stability of the PEMFC system. In this study, a model predictive control (MPC) approach for hydrogen circulation system is developed to regulate the hydrogen flow circulating. A model of the hydrogen supply system that contains a flow control valve, a supply manifold, a return manifold and a hydrogen circulating pump is firstly developed to describe the behavior of the hydrogen mass flow dynamics in the PEMFC. Subsequently, a hydrogen circulating pump MPC scheme is designed based on the piecewise linearized model of hydrogen circulation as well as the switched MPC controllers. By predicting the pressure of the return manifold and the angle velocity of the pump, the proposed MPC approach can manipulate the hydrogen circulating pump to achieve efficient and stable operation of the PEMFC.
KW - Fuel cell electric vehicles
KW - Hydrogen circulation system
KW - Polymer electrolyte membrane fuel cell (PEMFC)
KW - Switched model predictive control (MPC) scheme
UR - http://www.scopus.com/inward/record.url?scp=85078030009&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2019.12.147
DO - 10.1016/j.ijhydene.2019.12.147
M3 - Article
AN - SCOPUS:85078030009
SN - 0360-3199
VL - 45
SP - 20382
EP - 20390
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
IS - 39
ER -