Hybrid Organic–Inorganic Thermoelectric Materials and Devices

Huile Jin, Jun Li, James Iocozzia, Xin Zeng, Pai Chun Wei, Chao Yang, Nan Li, Zhaoping Liu, Jr Hau He*, Tiejun Zhu, Jichang Wang, Zhiqun Lin, Shun Wang

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

163 Citations (Scopus)

Abstract

Hybrid organic–inorganic materials have been considered as a new candidate in the field of thermoelectric materials since the last decade owing to their great potential to enhance the thermoelectric performance by utilizing the low thermal conductivity of organic materials and the high Seebeck coefficient, and high electrical conductivity of inorganic materials. Herein, we provide an overview of interfacial engineering in the synthesis of various organic–inorganic thermoelectric hybrid materials, along with the dimensional design for tuning their thermoelectric properties. Interfacial effects are examined in terms of nanostructures, physical properties, and chemical doping between the inorganic and organic components. Several key factors which dictate the thermoelectric efficiency and performance of various electronic devices are also discussed, such as the thermal conductivity, electric transportation, electronic band structures, and band convergence of the hybrid materials.

Original languageEnglish
Pages (from-to)15206-15226
Number of pages21
JournalAngewandte Chemie - International Edition
Volume58
Issue number43
DOIs
Publication statusPublished - 21 Oct 2019

Keywords

  • electronic structures
  • energy conversion
  • organic–inorganic interfaces
  • thermal conductivity
  • thermoelectrics

Fingerprint

Dive into the research topics of 'Hybrid Organic–Inorganic Thermoelectric Materials and Devices'. Together they form a unique fingerprint.

Cite this