HSCNN: CNN-Based Hyperspectral Image Recovery from Spectrally Undersampled Projections

Zhiwei Xiong, Zhan Shi, Huiqun Li, Lizhi Wang, Dong Liu, Feng Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

204 Citations (Scopus)

Abstract

This paper presents a unified deep learning framework to recover hyperspectral images from spectrally undersampled projections. Specifically, we investigate two kinds of representative projections, RGB and compressive sensing (CS) measurements. These measurements are first upsampled in the spectral dimension through simple interpolation or CS reconstruction, and the proposed method learns an end-to-end mapping from a large number of up-sampled/groundtruth hyperspectral image pairs. The mapping is represented as a deep convolutional neural network (CNN) that takes the spectrally upsampled image as input and outputs the enhanced hyperspetral one. We explore different network configurations to achieve high reconstruction fidelity. Experimental results on a variety of test images demonstrate significantly improved performance of the proposed method over the state-of-the-arts.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages518-525
Number of pages8
ISBN (Electronic)9781538610343
DOIs
Publication statusPublished - 1 Jul 2017
Event16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017 - Venice, Italy
Duration: 22 Oct 201729 Oct 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Volume2018-January

Conference

Conference16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Country/TerritoryItaly
CityVenice
Period22/10/1729/10/17

Fingerprint

Dive into the research topics of 'HSCNN: CNN-Based Hyperspectral Image Recovery from Spectrally Undersampled Projections'. Together they form a unique fingerprint.

Cite this