Highly-sensitive and anti-interferential electrochemical determination of hazardous metronidazole using w-NiSO4·NiS2 coated ZIF-67-derived cobalt/nitrogen-doped carbon

Yanan Pan, Duozhe Chen, Yang Fan, Jiabao Zuo, Qi Yang, Fan Qiu, Lili Qiu, Haiou Song, Shupeng Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Metronidazole (MNZ) is non-biodegradable and highly soluble in water, it is easy to accumulate in the aquatic environment, which has toxic effects in clinical applications such as causing peripheral neuritis, cardiogenic shock and pseudomembranous colitis. In this paper, Co/NC@w-NiSO4·NiS2 nanospheres were successfully constructed by coating w-NiSO4·NiS2 on the surface of ZIF-67 as the growth substrate via hydrothermal method and subsequent calcination for electrochemical detection of metronidazole (MNZ). The nanostructure and composition of the materials were confirmed by SEM, TEM, FT-IR and XPS. The sensitivity of Co/NC@w-NiSO4·NiS2 sensor for MNZ detection is 1977.14 μA/(mM·cm2); the limit of detection (LOD) is as low as 0.009 μM and the linear range is 1 ∼ 200 and 200 ∼ 1000 μM. Moreover, the modified sensor can resist the interference from many traditional living substances, and has good reproducibility and stability. High catalytic activity requires effective molecular transport and exposure of active sites. The successful construction of Co/NC@w-NiSO4·NiS2 nanostructure promotes the dispersion of materials and the migration of reactants on the electrode surface, and the w-NiSO4·NiS2 coating on the irregular particles of ZIF-67-derived cobalt/nitrogen-doped carbon suppressed the stacking of the w-NiSO4·NiS2 nanosheets to expose more catalytic sites. These factors are conducive to increasing the catalytic activity of the modified sensor for highly sensitive MNZ detection and ensuring the activity of catalyst in multiple catalytic cycles.

Original languageEnglish
Article number131293
JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
Volume666
DOIs
Publication statusPublished - 5 Jun 2023

Keywords

  • Electrochemistry
  • Metronidazole
  • Nickel
  • Sensor
  • ZIF-67

Fingerprint

Dive into the research topics of 'Highly-sensitive and anti-interferential electrochemical determination of hazardous metronidazole using w-NiSO4·NiS2 coated ZIF-67-derived cobalt/nitrogen-doped carbon'. Together they form a unique fingerprint.

Cite this