TY - JOUR
T1 - Highly efficient warm white organic light-emitting diodes by triplet exciton conversion
AU - Chang, Yi Lu
AU - Song, Yin
AU - Wang, Zhibin
AU - Helander, Michael G.
AU - Qiu, Jacky
AU - Chai, Lily
AU - Liu, Zhiwei
AU - Scholes, Gregory D.
AU - Lu, Zhenghong
PY - 2013/2/11
Y1 - 2013/2/11
N2 - White organic light-emitting diodes (WOLEDs) are currently under intensive research and development worldwide as a new generation light source to replace problematic incandescent bulbs and fluorescent tubes. One of the major challenges facing WOLEDs has been to achieve high energy efficiency and high color rendering index simultaneously to make the technology competitive against other alternative technologies such as inorganic LEDs. Here, an all-phosphor, four-color WOLEDs is presented, employing a novel device design principle utilizing molecular energy transfer or, specifically, triplet exciton conversion within common organic layers in a cascaded emissive zone configuration to achieve exceptional performance: an 24.5% external quantum efficiency (EQE) at 1000 cd/m2 with a color rendering index (CRI) of 81, and an EQE at 5000 cd/m2 of 20.4% with a CRI of 85, using standard phosphors. The EQEs achieved are the highest reported to date among WOLEDs of single or multiple emitters possessing such high CRI, which represents a significant step towards the realization of WOLEDs in solid-state lighting. A novel four-color white organic light-Organic Light-Emitting Diodes emitting diode architecture employing exciton trapping green molecules which efficiently perform triplet exciton down conversion to co-deposited yellow and red emitters achieves record high performance combinations of external quantum efficiency (EQE) and color rendering index (CRI): an EQE of 23.3% at 1000 cd/m2 and an EQE of 20.4% at 5000 cd/m2 with a CRI of 84 and 85, respectively, excellent for solid-state lighting.
AB - White organic light-emitting diodes (WOLEDs) are currently under intensive research and development worldwide as a new generation light source to replace problematic incandescent bulbs and fluorescent tubes. One of the major challenges facing WOLEDs has been to achieve high energy efficiency and high color rendering index simultaneously to make the technology competitive against other alternative technologies such as inorganic LEDs. Here, an all-phosphor, four-color WOLEDs is presented, employing a novel device design principle utilizing molecular energy transfer or, specifically, triplet exciton conversion within common organic layers in a cascaded emissive zone configuration to achieve exceptional performance: an 24.5% external quantum efficiency (EQE) at 1000 cd/m2 with a color rendering index (CRI) of 81, and an EQE at 5000 cd/m2 of 20.4% with a CRI of 85, using standard phosphors. The EQEs achieved are the highest reported to date among WOLEDs of single or multiple emitters possessing such high CRI, which represents a significant step towards the realization of WOLEDs in solid-state lighting. A novel four-color white organic light-Organic Light-Emitting Diodes emitting diode architecture employing exciton trapping green molecules which efficiently perform triplet exciton down conversion to co-deposited yellow and red emitters achieves record high performance combinations of external quantum efficiency (EQE) and color rendering index (CRI): an EQE of 23.3% at 1000 cd/m2 and an EQE of 20.4% at 5000 cd/m2 with a CRI of 84 and 85, respectively, excellent for solid-state lighting.
KW - energy transfer
KW - exciton trapping
KW - interlayer-free
KW - phosphorescent organic light emitting diodes
UR - http://www.scopus.com/inward/record.url?scp=84873618048&partnerID=8YFLogxK
U2 - 10.1002/adfm.201201858
DO - 10.1002/adfm.201201858
M3 - Article
AN - SCOPUS:84873618048
SN - 1616-301X
VL - 23
SP - 705
EP - 712
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 6
ER -