Highly efficient hydrogen production via a zinc-carbon @ nickel system

Keliang Wang*, Yayu Zuo, Pucheng Pei, Xiao Xie, Manhui Wei, Jianyin Xiong, Pengfei Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Hydrogen energy is a promising energy carrier for powering electric vehicles lying in its dense energy and zero pollution. However, the problems of hydrogen production and control have yet to be resolved. Here we present a novel hydrogen production using zinc plate connected to carbon @ nickel electrode in the alkaline solution, where the device works through zinc oxidation at the anode and hydrogen evolution reaction at the cathode. The results demonstrate that the amount of hydrogen production with carbon @ nickel electrode can be improved 5 times higher than that of nickel electrode, and carbon @ nickel electrode can block zinc oxide adsorption upon nickel surface to keep hydrogen production stable. Moreover, hydrogen production is flexibly controlled by means of switching on/off connection between zinc electrode and carbon @ nickel electrode, facilitating to promote hydrogen application. Lastly, the mechanism of hydrogen evolution reaction is analyzed based on electrochemical characterization and density functional theory calculation, displaying that carbon @ nickel electrode can improve electron transfer ability for hydrogen evolution reaction.

Original languageEnglish
Pages (from-to)5354-5360
Number of pages7
JournalInternational Journal of Hydrogen Energy
Volume47
Issue number8
DOIs
Publication statusPublished - 26 Jan 2022

Keywords

  • Carbon @ nickel electrode
  • Density functional theory calculations
  • Hydrogen evolution reaction mechanism
  • Zinc-nickel contact

Fingerprint

Dive into the research topics of 'Highly efficient hydrogen production via a zinc-carbon @ nickel system'. Together they form a unique fingerprint.

Cite this