Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based [70]fullerene bisadduct derivative as the acceptor

Xiangyue Meng, Wenqing Zhang, Zhan'Ao Tan*, Yongfang Li, Yihan Ma, Taishan Wang, Li Jiang, Chunying Shu, Chunru Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

112 Citations (Scopus)

Abstract

The efficiency of polymer solar cells (PSCs) can be essentially enhanced by improving the performance of electron-acceptor materials, including by increasing the lowest unoccupied molecular orbital (LUMO) level, improving the optical absorption, and tuning the material solubility. Here, a new soluble C 70 derivative, dihydronaphthyl-based C 70 bisadduct (NC 70BA), is synthesized and explored as acceptor in PSCs. The NC 70BA has high LUMO energy level that is 0.2 eV higher than [6,6]-phenyl-C 61-butyric acid methyl ester (PCBM), and displays broad light absorption in the visible region. Consequently, the PSC based on the blend of poly(3-hexylthiophene) (P3HT) and NC 70BA shows a high open-circuit voltage (V oc = 0.83 V) and a high power conversion efficiency (PCE = 5.95%), which are much better than those of the P3HT:PCBM-based device (V oc = 0.60 V; PCE = 3.74%). Moreover, the amorphous nature of NC 70BA effectively suppresses the thermally driven crystallization, leading to high thermal stability of the P3HT:NC 70BA-based solar cell devices. It is observed that the P3HT:NC 70BA-based device retains 80% of its original PCE value against thermal heating at 150 °C over 20 h. The results unambiguously indicate that the NC 70BA is a promising acceptor material for practical PSCs.

Original languageEnglish
Pages (from-to)2187-2193
Number of pages7
JournalAdvanced Functional Materials
Volume22
Issue number10
DOIs
Publication statusPublished - 23 May 2012
Externally publishedYes

Keywords

  • acceptors
  • bisadduct fullerene derivatives
  • open circuit voltage
  • polymer solar cells
  • thermal stability

Fingerprint

Dive into the research topics of 'Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based [70]fullerene bisadduct derivative as the acceptor'. Together they form a unique fingerprint.

Cite this