High-Yield Formation of Graphdiyne Macrocycles through On-Surface Assembling and Coupling Reaction

Mengxi Liu, Shichao Li, Jingyuan Zhou, Zeqi Zha, Jinliang Pan, Xin Li, Jin Zhang, Zhongfan Liu*, Yuanchang Li, Xiaohui Qiu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 38
  • Captures
    • Readers: 22
see details

Abstract

Rationally designed halogenated hydrocarbons are widely used building blocks to fabricate covalent-bonded carbon nanostructures on surfaces through a reaction pathway involving generation and dissociation of organometallic intermediates and irreversible covalent bond formation. Here, we provide a comprehensive picture of the on-surface-assisted homocoupling reaction of 1,3-bis(2-bromoethynyl)benzene on Au(111), aiming for the synthesis of graphdiyne nanostructures. Submolecular resolution scanning tunneling microscopy and noncontact atomic force microscopy observations identify the organometallic intermediates and their self-assemblies formed in the dehalogenation process. The demetallization of the organometallic intermediates at increased temperatures produces butadiyne moieties that spontaneously formed two different covalent structures (i.e., graphdiyne zigzag chains and macrocycles), whose ratio was found to depend on the initial coverage of organometallic intermediates. At the optimal condition, the stepwise demetallization and cyclization led to a high-yield production of graphdiyne macrocycles up to 95%. Statistical analysis and theoretical calculations suggested that the favored formation of macrocycles resulted from the complex interplay between thermodynamic and kinetic processes involving the organometallic bonded intermediates and the covalently bonded butadiyne moieties.

Original languageEnglish
Pages (from-to)12612-12618
Number of pages7
JournalACS Nano
Volume12
Issue number12
DOIs
Publication statusPublished - 26 Dec 2018

Keywords

  • graphdiyne macrocycle
  • noncontact atomic force microscopy
  • on-surface reaction
  • organometallic intermediate
  • scanning tunneling microscopy
  • thermodynamic and kinetic control

Fingerprint

Dive into the research topics of 'High-Yield Formation of Graphdiyne Macrocycles through On-Surface Assembling and Coupling Reaction'. Together they form a unique fingerprint.

Cite this

Liu, M., Li, S., Zhou, J., Zha, Z., Pan, J., Li, X., Zhang, J., Liu, Z., Li, Y., & Qiu, X. (2018). High-Yield Formation of Graphdiyne Macrocycles through On-Surface Assembling and Coupling Reaction. ACS Nano, 12(12), 12612-12618. https://doi.org/10.1021/acsnano.8b07349