High dimensional Bayesian optimization via supervised dimension reduction

Miao Zhang, Huiqi Li*, Steven Su

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

19 Citations (Scopus)

Abstract

Bayesian optimization (BO) has been broadly applied to computational expensive problems, but it is still challenging to extend BO to high dimensions. Existing works are usually under strict assumption of an additive or a linear embedding structure for objective functions. This paper directly introduces a supervised dimension reduction method, Sliced Inverse Regression (SIR), to high dimensional Bayesian optimization, which could effectively learn the intrinsic sub-structure of objective function during the optimization. Furthermore, a kernel trick is developed to reduce computational complexity and learn nonlinear subset of the unknowing function when applying SIR to extremely high dimensional BO. We present several computational benefits and derive theoretical regret bounds of our algorithm. Extensive experiments on synthetic examples and two real applications demonstrate the superiority of our algorithms for high dimensional Bayesian optimization.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages4292-4298
Number of pages7
ISBN (Electronic)9780999241141
DOIs
Publication statusPublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period10/08/1916/08/19

Fingerprint

Dive into the research topics of 'High dimensional Bayesian optimization via supervised dimension reduction'. Together they form a unique fingerprint.

Cite this