Abstract
To solve the reduced output voltage caused by the high lithium redox potential of Co3O4 when applied as an anode material in full cells, an effective strategy is to partially replace Co by Mn to form MnCo2O4 without changing the original crystal structure. Herein, 3D hierarchical MnCo2O4 nanosheets arrays grown via a hydrothermal method on carbon cloths, as binder-free anodes for lithium-ion batteries, exhibit a high areal capacity of 3.0 mA h cm-2 at a current density of 800 μA cm-2, excellent cycling stability, good rate performances and a discharge voltage plateau of 0.25 V which is lower than that of their Co3O4 nanosheet counterparts. Due to the increased output voltage of the full cell induced by the introduction of Mn species with a lower lithium extraction potential, MnCo2O4 based full cells display higher or comparative capacity in a certain voltage range compared with Co3O4, while still retaining the excellent conductivity of Co3O4 electrodes. Our work here paves the way for the design of high performance full cells with Co-based oxide electrodes. This journal is
Original language | English |
---|---|
Pages (from-to) | 8858-8864 |
Number of pages | 7 |
Journal | Nanoscale |
Volume | 6 |
Issue number | 15 |
DOIs | |
Publication status | Published - 7 Aug 2014 |
Externally published | Yes |