Heteroatom-Doping of Non-Noble Metal-Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy

Jing Wang*, Ting Liao, Zhongzhe Wei, Junting Sun, Junjie Guo*, Ziqi Sun*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

212 Citations (Scopus)

Abstract

Electrocatalytic water splitting for hydrogen production is an appealing way to reduce carbon emissions and generate renewable fuels. This promising process, however, is limited by its sluggish reaction kinetics and high-cost catalysts. Construction of low-cost and high-performance non-noble metal-based catalysts have been one of the most effective approaches to address these grand challenges. Notably, the electronic structure tuning strategy, which could subtly tailor the electronic states, band structures, and adsorption ability of the catalysts, has become a pivotal way to further enhance the electrochemical water splitting reactions based on non-noble metal-based catalysts. Particularly, heteroatom-doping plays an effective role in regulating the electronic structure and optimizing the intrinsic activity of the catalysts. Nevertheless, the reaction kinetics, and in particular, the functional mechanisms of the hetero-dopants in catalysts yet remains ambiguous. Herein, the recent progress is comprehensively reviewed in heteroatom doped non-noble metal-based electrocatalysts for hydrogen evolution reaction, particularly focus on the electronic tuning effect of hetero-dopants in the catalysts and the corresponding synthetic pathway, catalytic performance, and activity origin. This review also attempts to establish an intrinsic correlation between the localized electronic structures and the catalytic properties, so as to provide a good reference for developing advanced low-cost catalysts.

Original languageEnglish
Article number2000988
JournalSmall Methods
Volume5
Issue number4
DOIs
Publication statusPublished - 15 Apr 2021
Externally publishedYes

Keywords

  • electrocatalysis
  • electronic structure tuning
  • heteroatom doping
  • hydrogen evolution reaction
  • non-noble metal-based catalysts

Fingerprint

Dive into the research topics of 'Heteroatom-Doping of Non-Noble Metal-Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy'. Together they form a unique fingerprint.

Cite this