Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients

P. E. Chaudru de Raynal, S. Menozzi*, A. Pesce, X. Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We establish heat kernel and gradient estimates for the density of kinetic degenerate Kolmogorov stochastic differential equations. Our results are established under somehow minimal assumptions that guarantee the SDE is weakly well posed.

Original languageEnglish
Article number103229
JournalBulletin des Sciences Mathematiques
Volume183
DOIs
Publication statusPublished - Mar 2023

Keywords

  • Degenerate Kolmogorov equations
  • Heat kernel and gradient estimates
  • Kinetic dynamics
  • Parametrix

Fingerprint

Dive into the research topics of 'Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients'. Together they form a unique fingerprint.

Cite this