Abstract
We prove the Harnack inequality for the weakly coupled elliptic systemS, where Su=\big (\begin{align} L_1 & & \\ & \cdots & \\ & & L_N\end{align}\big )u+Qu and u=\big (\begin{align} u_1\\ \cdot \\ \cdot \\ \cdot \\ u_N\end{align}\big ). {Lk,k=1,...,N} are second order elliptic operators with Hölder continuous coefficients andQis a matrix-valued function with singular entries. In the case thatQis irreducible, a full Harnack principle is proved.
Original language | English |
---|---|
Pages (from-to) | 261-282 |
Number of pages | 22 |
Journal | Journal of Differential Equations |
Volume | 139 |
Issue number | 2 |
DOIs | |
Publication status | Published - 20 Sept 1997 |
Externally published | Yes |