TY - JOUR
T1 - Graphene as reusable substrate for bialkali photocathodes
AU - Guo, Lei
AU - Yamaguchi, Hisato
AU - Yamamoto, Masahiro
AU - Matsui, Fumihiko
AU - Wang, Gaoxue
AU - Liu, Fangze
AU - Yang, Ping
AU - Batista, Enrique R.
AU - Moody, Nathan A.
AU - Takashima, Yoshifumi
AU - Katoh, Masahiro
N1 - Publisher Copyright:
© 2020 Author(s).
PY - 2020/6/22
Y1 - 2020/6/22
N2 - Bialkali photocathodes, such as cesium potassium antimonide (CsK2Sb), can generate a high-brightness electron beam using a high-power green laser. These photocathode materials have potential applications in advanced accelerators and electron microscopes. It is known that the quantum efficiency (QE) of these photocathodes is affected severely by their substrates; however, reusability of the substrates is not well known. Here, we use graphene, silicon (Si), and molybdenum (Mo) substrates to evaluate the effects of substrates on the QE of redeposited CsK2Sb photocathodes after thermal cleanings. We found that the QE of CsK2Sb photocathodes redeposited on a graphene substrate after thermal cleaning at 500 °C remained largely unchanged. On the other hand, the QE of redeposited photocathodes on Si and Mo substrates after thermal cleaning at the same temperature decreased drastically. We used x-ray photoelectron spectroscopy to quantitatively evaluate the residues of photocathodes after thermal cleaning at 400 °C and 500 °C. We found that Sb, K, and Cs are removed by thermal cleaning at 500 °C for the graphene substrate, but all or the majority of these elements remained on the Si and Mo substrates. The results were consistent with our density functional theory calculations for the case of Si, which we investigated. Furthermore, our angle-resolved photoemission spectroscopy on graphene indicated that its intrinsic electronic structure is preserved after photocathode deposition and thermal cleaning at 500 °C. Hence, we attributed the difference in the amount of photocathode residue to the unique dangling-bond-free surface of inert graphene. Our results provide a foundation for graphene-based reusable substrates for high-QE semiconductor photocathodes.
AB - Bialkali photocathodes, such as cesium potassium antimonide (CsK2Sb), can generate a high-brightness electron beam using a high-power green laser. These photocathode materials have potential applications in advanced accelerators and electron microscopes. It is known that the quantum efficiency (QE) of these photocathodes is affected severely by their substrates; however, reusability of the substrates is not well known. Here, we use graphene, silicon (Si), and molybdenum (Mo) substrates to evaluate the effects of substrates on the QE of redeposited CsK2Sb photocathodes after thermal cleanings. We found that the QE of CsK2Sb photocathodes redeposited on a graphene substrate after thermal cleaning at 500 °C remained largely unchanged. On the other hand, the QE of redeposited photocathodes on Si and Mo substrates after thermal cleaning at the same temperature decreased drastically. We used x-ray photoelectron spectroscopy to quantitatively evaluate the residues of photocathodes after thermal cleaning at 400 °C and 500 °C. We found that Sb, K, and Cs are removed by thermal cleaning at 500 °C for the graphene substrate, but all or the majority of these elements remained on the Si and Mo substrates. The results were consistent with our density functional theory calculations for the case of Si, which we investigated. Furthermore, our angle-resolved photoemission spectroscopy on graphene indicated that its intrinsic electronic structure is preserved after photocathode deposition and thermal cleaning at 500 °C. Hence, we attributed the difference in the amount of photocathode residue to the unique dangling-bond-free surface of inert graphene. Our results provide a foundation for graphene-based reusable substrates for high-QE semiconductor photocathodes.
UR - http://www.scopus.com/inward/record.url?scp=85087545944&partnerID=8YFLogxK
U2 - 10.1063/5.0010816
DO - 10.1063/5.0010816
M3 - Article
AN - SCOPUS:85087545944
SN - 0003-6951
VL - 116
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 25
M1 - 251903
ER -