Graph Game Embedding

Xiaobin Hong, Tong Zhang, Zhen Cui*, Yuge Huang, Pengcheng Shen, Shaoxin Li, Jian Yang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

Graph embedding aims to encode nodes/edges into low-dimensional continuous features, and has become a crucial tool for graph analysis including graph/node classification, link prediction, etc. In this paper we propose a novel graph learning framework, named graph game embedding, to learn discriminative node representation as well as encode graph structures. Inspired by the spirit of game learning, node embedding is converted to the selection/searching process of player strategies, where each node corresponds to one player and each edge corresponds to the interaction of two players. Then, a utility function, which theoretically satisfies the Nash Equilibrium, is defined to measure the benefit/loss of players during graph evolution. Furthermore, a collaboration and competition mechanism is introduced to increase the discriminant learning ability. Under this graph game embedding framework, considering different interaction manners of nodes, we propose two specific models, named paired game embedding for paired nodes and group game embedding for group interaction. Comparing with existing graph embedding methods, our algorithm possesses two advantages: (1) the designed utility function ensures the stable graph evolution with theoretical convergence and Nash Equilibrium satisfaction; (2) the introduced collaboration and competition mechanism endows the graph game embedding framework with discriminative feature leaning ability by guiding each node to learn an optimal strategy distinguished from others. We test the proposed method on three public datasets about citation networks, and the experimental results verify the effectiveness of our method.

Original languageEnglish
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages7711-7720
Number of pages10
ISBN (Electronic)9781713835974
Publication statusPublished - 2021
Externally publishedYes
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: 2 Feb 20219 Feb 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume9A

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/02/219/02/21

Fingerprint

Dive into the research topics of 'Graph Game Embedding'. Together they form a unique fingerprint.

Cite this