TY - GEN
T1 - Graph Deformer Network
AU - Zhao, Wenting
AU - Fang, Yuan
AU - Cui, Zhen
AU - Zhang, Tong
AU - Yang, Jian
N1 - Publisher Copyright:
© 2021 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Convolution learning on graphs draws increasing attention recently due to its potential applications to a large amount of irregular data. Most graph convolution methods leverage the plain summation/average aggregation to avoid the discrepancy of responses from isomorphic graphs. However, such an extreme collapsing way would result in a structural loss and signal entanglement of nodes, which further cause the degradation of the learning ability. In this paper, we propose a simple yet effective Graph Deformer Network (GDN) to fulfill anisotropic convolution filtering on graphs, analogous to the standard convolution operation on images. Local neighborhood subgraphs (acting like receptive fields) with different structures are deformed into a unified virtual space, coordinated by several anchor nodes. In the deformation process, we transfer components of nodes therein into affinitive anchors by learning their correlations, and build a multi-granularity feature space calibrated with anchors. Anisotropic convolutional kernels can be further performed over the anchor-coordinated space to well encode local variations of receptive fields. By parameterizing anchors and stacking coarsening layers, we build a graph deformer network in an end-to-end fashion. Theoretical analysis indicates its connection to previous work and shows the promising property of graph isomorphism testing. Extensive experiments on widely-used datasets validate the effectiveness of GDN in graph and node classifications.
AB - Convolution learning on graphs draws increasing attention recently due to its potential applications to a large amount of irregular data. Most graph convolution methods leverage the plain summation/average aggregation to avoid the discrepancy of responses from isomorphic graphs. However, such an extreme collapsing way would result in a structural loss and signal entanglement of nodes, which further cause the degradation of the learning ability. In this paper, we propose a simple yet effective Graph Deformer Network (GDN) to fulfill anisotropic convolution filtering on graphs, analogous to the standard convolution operation on images. Local neighborhood subgraphs (acting like receptive fields) with different structures are deformed into a unified virtual space, coordinated by several anchor nodes. In the deformation process, we transfer components of nodes therein into affinitive anchors by learning their correlations, and build a multi-granularity feature space calibrated with anchors. Anisotropic convolutional kernels can be further performed over the anchor-coordinated space to well encode local variations of receptive fields. By parameterizing anchors and stacking coarsening layers, we build a graph deformer network in an end-to-end fashion. Theoretical analysis indicates its connection to previous work and shows the promising property of graph isomorphism testing. Extensive experiments on widely-used datasets validate the effectiveness of GDN in graph and node classifications.
UR - http://www.scopus.com/inward/record.url?scp=85125470909&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85125470909
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1646
EP - 1652
BT - Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
A2 - Zhou, Zhi-Hua
PB - International Joint Conferences on Artificial Intelligence
T2 - 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
Y2 - 19 August 2021 through 27 August 2021
ER -