Gram-Scale Synthesis of Blue-Emitting CH3NH3PbBr3 Quantum Dots Through Phase Transfer Strategy

Feng Zhang, Changtao Xiao, Yunfei Li, Xin Zhang, Jialun Tang, Shuai Chang*, Qibing Pei, Haizheng Zhong

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Reprecipitation synthesis has been demonstrated to be a simple and convenient route to fabricate high quality perovskite quantum dots toward display applications, whereas the limited chemical yields (< 10%) and difficulty of purification limited its further application. In order to overcome this issue, we here report a modified emulsion synthesis by introducing phase transfer strategy, which achieving effective extraction of newly formed perovskite quantum dots into non-polar solvent and avoiding the degradation of perovskite quantum dots to a large extent. Based on this strategy, gram-scale CH3NH3PbBr3 quantum dots were fabricated in 10 mL (~0.02 mol/L) colloidal solution with chemical yields larger than 70%. The as fabricated CH3NH3PbBr3 quantum dots exhibit an emission peak of 453 nm and a full width at half maximum of only 14 nm. Moreover, electroluminescent devices based on blue emitting CH3NH3PbBr3 quantum dots were also explored with a maximum luminance of 32 cd/m2, showing potential applications in blue light emitting devices.

Original languageEnglish
Article number444
JournalFrontiers in Chemistry
Volume6
DOIs
Publication statusPublished - 26 Sept 2018

Keywords

  • CHNHPbBr
  • blue-emitting
  • emulsion synthesis
  • phase transfer
  • quantum dots

Fingerprint

Dive into the research topics of 'Gram-Scale Synthesis of Blue-Emitting CH3NH3PbBr3 Quantum Dots Through Phase Transfer Strategy'. Together they form a unique fingerprint.

Cite this