TY - GEN
T1 - Global Variational Convolution Network for Semi-supervised Node Classification on Large-Scale Graphs
AU - Qiu, Yide
AU - Zhang, Tong
AU - Huang, Bo
AU - Cui, Zhen
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2024.
PY - 2024
Y1 - 2024
N2 - Graph Neural Networks (GNNs) have received much attention in the graph deep learning. However, there are some issues in extending traditional aggregation-based GNNs to large-scale graphs. With the rapid increase of neighborhood width, we find that the direction of aggregation can be disrupted and quite unbalanced, which compromises graphic structure and feature representation. This phenomenon is referred to Receptive Field Collapse. In order to preserve more structural information on large-scale graphs, we propose a novel Global Variational Convolutional Networks (GVCNs) for Semi-Supervised Node Classifications, which consists of a variational aggregation mechanism and a guidance learning mechanism. Variational aggregation can moderately map the unbalanced neighborhood distribution to a prior distribution. And the guidance learning mechanism, based on positive pointwise mutual information (PPMI), encourages the model to concentrate on more prominent graphic structures, which increases information entropy and alleviates Receptive Field Collapse. In addition, we propose a variational convolutional kernel to achieve effective global aggregation. Finally, we evaluate GVCNs on the Open Graph Benchmark (OGB) Arxiv and Products datasets. Up to the submission date (Jan 20, 2023), GVCNs achieve significant performance improvements compared to other aggregation-based GNNs, even state-of-the-art decoupling-based methods, the performance of GVCNs remains competitive with moderate spatiotemporal complexity. Our code can be obtained from: https://github.com/Yide-Qiu/GVCN.
AB - Graph Neural Networks (GNNs) have received much attention in the graph deep learning. However, there are some issues in extending traditional aggregation-based GNNs to large-scale graphs. With the rapid increase of neighborhood width, we find that the direction of aggregation can be disrupted and quite unbalanced, which compromises graphic structure and feature representation. This phenomenon is referred to Receptive Field Collapse. In order to preserve more structural information on large-scale graphs, we propose a novel Global Variational Convolutional Networks (GVCNs) for Semi-Supervised Node Classifications, which consists of a variational aggregation mechanism and a guidance learning mechanism. Variational aggregation can moderately map the unbalanced neighborhood distribution to a prior distribution. And the guidance learning mechanism, based on positive pointwise mutual information (PPMI), encourages the model to concentrate on more prominent graphic structures, which increases information entropy and alleviates Receptive Field Collapse. In addition, we propose a variational convolutional kernel to achieve effective global aggregation. Finally, we evaluate GVCNs on the Open Graph Benchmark (OGB) Arxiv and Products datasets. Up to the submission date (Jan 20, 2023), GVCNs achieve significant performance improvements compared to other aggregation-based GNNs, even state-of-the-art decoupling-based methods, the performance of GVCNs remains competitive with moderate spatiotemporal complexity. Our code can be obtained from: https://github.com/Yide-Qiu/GVCN.
KW - Large-scale Graphs
KW - Semi-Supervised Classification
KW - Variational
UR - http://www.scopus.com/inward/record.url?scp=85181976088&partnerID=8YFLogxK
U2 - 10.1007/978-981-99-8543-2_16
DO - 10.1007/978-981-99-8543-2_16
M3 - Conference contribution
AN - SCOPUS:85181976088
SN - 9789819985425
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 192
EP - 204
BT - Pattern Recognition and Computer Vision - 6th Chinese Conference, PRCV 2023, Proceedings
A2 - Sheng, Bin
A2 - Bi, Lei
A2 - Kim, Jinman
A2 - Magnenat-Thalmann, Nadia
A2 - Thalmann, Daniel
PB - Springer Science and Business Media Deutschland GmbH
T2 - 6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023
Y2 - 13 October 2023 through 15 October 2023
ER -