Global stabilization for triangular formations under mixed distance and bearing constraints

Yanjun Lin, Ming Cao, Zhiyun Lin, Qingkai Yang, Liangming Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

This paper addresses the triangular formation control problem for a system of three agents under mixed distance and bearing constraints. The main challenge is to find a fully distributed control law for each agent to guarantee the global convergence towards a desired triangular formation. To solve this problem, we invoke the property that a triangle can be uniquely determined by the lengths of its two sides together with the magnitude of the corresponding included angle. Based on this feature, we design a class of control strategies, under which each agent is only responsible for a single control variable, i.e., a distance or an angle, such that the control laws can be implemented in local coordinate frames. The global convergence is shown by analyzing the dynamics of the closed-loop system in its cascade form. Then we discuss some extensions on more general formation shapes and give the quadrilateral formation as an example. Simulation results are provided to validate the effectiveness of the proposed control strategies.

Original languageEnglish
Title of host publication2019 IEEE 15th International Conference on Control and Automation, ICCA 2019
PublisherIEEE Computer Society
Pages1545-1550
Number of pages6
ISBN (Electronic)9781728111643
DOIs
Publication statusPublished - Jul 2019
Event15th IEEE International Conference on Control and Automation, ICCA 2019 - Edinburgh, United Kingdom
Duration: 16 Jul 201919 Jul 2019

Publication series

NameIEEE International Conference on Control and Automation, ICCA
Volume2019-July
ISSN (Print)1948-3449
ISSN (Electronic)1948-3457

Conference

Conference15th IEEE International Conference on Control and Automation, ICCA 2019
Country/TerritoryUnited Kingdom
CityEdinburgh
Period16/07/1919/07/19

Fingerprint

Dive into the research topics of 'Global stabilization for triangular formations under mixed distance and bearing constraints'. Together they form a unique fingerprint.

Cite this