Giant ferroelectric polarization in a bilayer graphene heterostructure

Ruirui Niu, Zhuoxian Li, Xiangyan Han, Zhuangzhuang Qu, Dongdong Ding, Zhiyu Wang, Qianling Liu, Tianyao Liu, Chunrui Han, Kenji Watanabe, Takashi Taniguchi, Menghao Wu, Qi Ren, Xueyun Wang, Jiawang Hong, Jinhai Mao, Zheng Han, Kaihui Liu, Zizhao Gan, Jianming Lu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

At the interface of van der Waals heterostructures, the crystal symmetry and the electronic structure can be reconstructed, giving rise to physical properties superior to or absent in parent materials. Here by studying a Bernal bilayer graphene moiré superlattice encapsulated by 30°-twisted boron nitride flakes, we report an unprecedented ferroelectric polarization with the areal charge density up to 1013cm−2, which is far beyond the capacity of a moiré band. The translated polarization ~5 pC m−1 is among the highest interfacial ferroelectrics engineered by artificially stacking van der Waals crystals. The gate-specific ferroelectricity and co-occurring anomalous screening are further visualized via Landau levels, and remain robust for Fermi surfaces outside moiré bands, confirming their independence on correlated electrons. We also find that the gate-specific resistance hysteresis loops could be turned off by the other gate, providing an additional control knob. Furthermore, the ferroelectric switching can be applied to intrinsic properties such as topological valley current. Overall, the gate-specific ferroelectricity with strongly enhanced charge polarization may encourage more explorations to optimize and enrich this novel class of ferroelectricity, and promote device applications for ferroelectric switching of various quantum phenomena.

Original languageEnglish
Article number6241
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2022

Fingerprint

Dive into the research topics of 'Giant ferroelectric polarization in a bilayer graphene heterostructure'. Together they form a unique fingerprint.

Cite this