TY - JOUR
T1 - Gate Screening on Remote Phonon Scattering for Pentacene Organic TFTs
T2 - Holes Versus Electrons
AU - Ma, Yuan Xiao
AU - Su, Hui
AU - Tang, Wing Man
AU - Lai, Pui To
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2019/6
Y1 - 2019/6
N2 - Bottom-gated pentacene organic thin-film transistors (OTFTs) were fabricated on p-type and n-type Si wafers with different resistivities, with NdTaON as a high- {k} gate dielectric. Although the pentacene grain size and dielectric surface roughness were nearly the same for all the samples, the carrier mobility improved with decreasing resistivity for both types of OTFTs (p-gate and n-gate), indicating that similar to the electron concentration, the hole concentration in the gate electrode can also affect the carrier mobility. This is attributed to the remote phonon scattering of the high- {k} gate dielectric on the channel carriers, which can be screened by the holes in the gate electrode. The p-gate and n-gate samples with the lowest gate-electrode resistivity of 0.005~\Omega \cdot cm achieve the highest mobility of 1.15 and 1.37 cm ^{{2}}/\text{V}\cdot \text{s} , respectively. Moreover, for the same gate-doping concentration, the p-gate sample shows lower mobility than the n-gate sample. This is likely because under a negative gate voltage ( {V}-{g} ), the p-gate is depleted to make the actual {V}-{g} smaller than the applied {V}-{g} , thus resulting in a lower extracted carrier mobility. In addition, such a depletion effect leads to a lower hole concentration near the gate-electrode/gate-dielectric interface, thus weakening the gate screening effect on the remote phonon scattering.
AB - Bottom-gated pentacene organic thin-film transistors (OTFTs) were fabricated on p-type and n-type Si wafers with different resistivities, with NdTaON as a high- {k} gate dielectric. Although the pentacene grain size and dielectric surface roughness were nearly the same for all the samples, the carrier mobility improved with decreasing resistivity for both types of OTFTs (p-gate and n-gate), indicating that similar to the electron concentration, the hole concentration in the gate electrode can also affect the carrier mobility. This is attributed to the remote phonon scattering of the high- {k} gate dielectric on the channel carriers, which can be screened by the holes in the gate electrode. The p-gate and n-gate samples with the lowest gate-electrode resistivity of 0.005~\Omega \cdot cm achieve the highest mobility of 1.15 and 1.37 cm ^{{2}}/\text{V}\cdot \text{s} , respectively. Moreover, for the same gate-doping concentration, the p-gate sample shows lower mobility than the n-gate sample. This is likely because under a negative gate voltage ( {V}-{g} ), the p-gate is depleted to make the actual {V}-{g} smaller than the applied {V}-{g} , thus resulting in a lower extracted carrier mobility. In addition, such a depletion effect leads to a lower hole concentration near the gate-electrode/gate-dielectric interface, thus weakening the gate screening effect on the remote phonon scattering.
KW - Organic thin-film transistor
KW - carrier screening
KW - remote phonon scattering
UR - http://www.scopus.com/inward/record.url?scp=85066435177&partnerID=8YFLogxK
U2 - 10.1109/LED.2019.2909531
DO - 10.1109/LED.2019.2909531
M3 - Article
AN - SCOPUS:85066435177
SN - 0741-3106
VL - 40
SP - 893
EP - 896
JO - IEEE Electron Device Letters
JF - IEEE Electron Device Letters
IS - 6
M1 - 8682099
ER -