TY - GEN
T1 - Fusion Learning of Multimodal Neuroimaging with Weighted Graph AutoEncoder
AU - Shi, Gen
AU - Zhu, Yifan
AU - Zhang, Fuquan
AU - Liu, Wenjin
AU - Yao, Yuxiang
AU - Li, Xuesong
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Neuroimaging plays an significant role in diagnosing and pathological study of brain diseases. Considering that both functional and structural abnormalities may lead to brain dis-eases and disorders, single modal neuroimaging approach may not fully characterize brain activities and working modes. Fusion of multimodal neuroimaging data is expected to provide more comprehensive characterization of brain diseases, given that the different modalities contain more complementary information. Recently, Graph Convolutional Networks (GCNs) is shown to have powerful capacity in representation learning for graph-structure data, which is considered to integrate both graph se-mantic structure and node information. Therefore, in this paper, we propose the Weighted Graph AutoEncoder (WGAE), a GCN- driven multimodal fusion model, to learn the combinational latent node representation of fMRI and DTI neuroimaging data, which are used as node features and graph structure respectively in the graph in unsupervised manner. Experimental results on two real-world datasets show the superiority of the proposed model over other existing single-modal or multi-modal methods in learning representations for disease prediction as the downstream task. Furthermore, ablation experiments also show the collaborative contribution of multimodal neuroimaging fusion in the proposed model, and also show the feasibility of assessing the respective importance of the two modalities during the disease prediction.
AB - Neuroimaging plays an significant role in diagnosing and pathological study of brain diseases. Considering that both functional and structural abnormalities may lead to brain dis-eases and disorders, single modal neuroimaging approach may not fully characterize brain activities and working modes. Fusion of multimodal neuroimaging data is expected to provide more comprehensive characterization of brain diseases, given that the different modalities contain more complementary information. Recently, Graph Convolutional Networks (GCNs) is shown to have powerful capacity in representation learning for graph-structure data, which is considered to integrate both graph se-mantic structure and node information. Therefore, in this paper, we propose the Weighted Graph AutoEncoder (WGAE), a GCN- driven multimodal fusion model, to learn the combinational latent node representation of fMRI and DTI neuroimaging data, which are used as node features and graph structure respectively in the graph in unsupervised manner. Experimental results on two real-world datasets show the superiority of the proposed model over other existing single-modal or multi-modal methods in learning representations for disease prediction as the downstream task. Furthermore, ablation experiments also show the collaborative contribution of multimodal neuroimaging fusion in the proposed model, and also show the feasibility of assessing the respective importance of the two modalities during the disease prediction.
KW - Graph AutoEncoder
KW - Graph Neural Net-work
KW - Multimodal Neuroimaging
UR - http://www.scopus.com/inward/record.url?scp=85146657163&partnerID=8YFLogxK
U2 - 10.1109/BIBM55620.2022.9995243
DO - 10.1109/BIBM55620.2022.9995243
M3 - Conference contribution
AN - SCOPUS:85146657163
T3 - Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
SP - 2467
EP - 2473
BT - Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
A2 - Adjeroh, Donald
A2 - Long, Qi
A2 - Shi, Xinghua
A2 - Guo, Fei
A2 - Hu, Xiaohua
A2 - Aluru, Srinivas
A2 - Narasimhan, Giri
A2 - Wang, Jianxin
A2 - Kang, Mingon
A2 - Mondal, Ananda M.
A2 - Liu, Jin
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
Y2 - 6 December 2022 through 8 December 2022
ER -