Functoriality of colored link homologies

Michael Ehrig, Daniel Tubbenhauer, Paul Wedrich

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 19
  • Captures
    • Readers: 5
see details

Abstract

We prove that the bigraded, colored Khovanov–Rozansky type A link and tangle invariants are functorial with respect to link and tangle cobordisms.

Original languageEnglish
Pages (from-to)996-1040
Number of pages45
JournalProceedings of the London Mathematical Society
Volume117
Issue number5
DOIs
Publication statusPublished - Nov 2018
Externally publishedYes

Keywords

  • 57M25
  • 57M27 (primary)
  • 81T45 (secondary)

Fingerprint

Dive into the research topics of 'Functoriality of colored link homologies'. Together they form a unique fingerprint.

Cite this

Ehrig, M., Tubbenhauer, D., & Wedrich, P. (2018). Functoriality of colored link homologies. Proceedings of the London Mathematical Society, 117(5), 996-1040. https://doi.org/10.1112/plms.12154