TY - JOUR
T1 - From Fluorescence-Transfer-Lightening-Printing-Assisted Conductive Adhesive Nanocomposite Hydrogels toward Wearable Interactive Optical Information-Electronic Strain Sensors
AU - Su, Gongmeiyue
AU - Wang, Ni
AU - Liu, Yangkun
AU - Zhang, Ruoyao
AU - Li, Zhao
AU - Deng, Yulin
AU - Tang, Ben Zhong
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024/6/20
Y1 - 2024/6/20
N2 - The interactive flexible device, which monitors the human motion in optical and electrical synergistic modes, has attracted growing attention recently. The incorporation of information attribute within the optical signal is deemed advantageous for improving the interactive efficiency. Therefore, the development of wearable optical information-electronic strain sensors holds substantial promise, but integrating and synergizing various functions and realizing strain-mediated information transformation keep challenging. Herein, an amylopectin (AP) modified nanoclay/polyacrylamide-based nanocomposite (NC) hydrogel and an aggregation-induced-emission-active ink are fabricated. Through the fluorescence-transfer printing of the ink onto the hydrogel film in different strains with nested multiple symbolic information, a wearable interactive fluorescent information-electronic strain sensor is developed. In the sensor, the nanoclay plays a synergistic “one-stone-three-birds” role, contributing to “lightening” fluorescence (≈80 times emission intensity enhancement), ionic conductivity, and excellent stretchability (>1000%). The sensor has high biocompatibility, resilience (elastic recovery ratio: 97.8%), and strain sensitivity (gauge factor (GF): 10.9). Additionally, the AP endows the sensor with skin adhesiveness. The sensor can achieve electrical monitoring of human joint movements while displaying interactive fluorescent information transformation. This research poses an efficient strategy to develop multifunctional materials and provides a general platform for achieving next-generation interactive devices with prospective applications in wearable devices, human-machine interfaces, and artificial intelligence.
AB - The interactive flexible device, which monitors the human motion in optical and electrical synergistic modes, has attracted growing attention recently. The incorporation of information attribute within the optical signal is deemed advantageous for improving the interactive efficiency. Therefore, the development of wearable optical information-electronic strain sensors holds substantial promise, but integrating and synergizing various functions and realizing strain-mediated information transformation keep challenging. Herein, an amylopectin (AP) modified nanoclay/polyacrylamide-based nanocomposite (NC) hydrogel and an aggregation-induced-emission-active ink are fabricated. Through the fluorescence-transfer printing of the ink onto the hydrogel film in different strains with nested multiple symbolic information, a wearable interactive fluorescent information-electronic strain sensor is developed. In the sensor, the nanoclay plays a synergistic “one-stone-three-birds” role, contributing to “lightening” fluorescence (≈80 times emission intensity enhancement), ionic conductivity, and excellent stretchability (>1000%). The sensor has high biocompatibility, resilience (elastic recovery ratio: 97.8%), and strain sensitivity (gauge factor (GF): 10.9). Additionally, the AP endows the sensor with skin adhesiveness. The sensor can achieve electrical monitoring of human joint movements while displaying interactive fluorescent information transformation. This research poses an efficient strategy to develop multifunctional materials and provides a general platform for achieving next-generation interactive devices with prospective applications in wearable devices, human-machine interfaces, and artificial intelligence.
KW - adhesion
KW - aggregation-induced emission
KW - electronic strain sensors
KW - fluorescent information transformation
KW - nanocomposite hydrogels
UR - http://www.scopus.com/inward/record.url?scp=85187942237&partnerID=8YFLogxK
U2 - 10.1002/adma.202400085
DO - 10.1002/adma.202400085
M3 - Article
AN - SCOPUS:85187942237
SN - 0935-9648
VL - 36
JO - Advanced Materials
JF - Advanced Materials
IS - 25
M1 - 2400085
ER -