Formation of superhydrophobic microspheres of poly(vinylidene fluoride-hexafluoropropylene)/graphene composite via gelation

Li Zhang, Dao An Zha, Tingting Du, Shilin Mei, Zujin Shi, Zhaoxia Jin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

55 Citations (Scopus)

Abstract

We report on the spontaneous formation of superhydrophobic poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/graphene composite microspheres with uniform size via gelation. When the suspension of PVDF-HFP/graphene (0.25 wt. % with respect to PVDF-HFP) in DMF adsorbs water vapor, it changes to a hybrid gel. A dried porous gel is obtained after solvent exchange and freeze drying. Morphology characterization shows that this hybrid gel is composed of PVDF-HFP/graphene microspheres with a diameter of 8-10 μm. In contrast, PVDF-HFP solution gives rise to a cellular microstructure following the same experimental procedures. We further elucidate the formation mechanism on the basis of the characterization by freeze fracture transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry characterizations. Furthermore, contact angle measurements of water on PVDF-HFP/graphene indicates that the hydrophobic nature of PVDF-HFP combined with the micro/nanoscale hierarchical texture creates a superhydrophobic surface. Such superhydrophobic microspheres may have potential applications as water-repellent catalyst-supporting materials.

Original languageEnglish
Pages (from-to)8943-8949
Number of pages7
JournalLangmuir
Volume27
Issue number14
DOIs
Publication statusPublished - 19 Jul 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Formation of superhydrophobic microspheres of poly(vinylidene fluoride-hexafluoropropylene)/graphene composite via gelation'. Together they form a unique fingerprint.

Cite this