Abstract
In this work, the non-equiatomic high entropy alloy AlCoCrFeNiTi0.5 was additively manufactured via the laser engineered net shaping (LENS™) process. Contrary to the columnar grain microstructure commonly observed in previously reported alloys, the as-deposited AlCoCrFeNiTi0.5 specimens exhibit a fully equiaxed grain microstructure in a wide range of temperature gradients G (85 to 1005 K/mm) and solidification velocities V (5 to 20 mm/s). The main microstructural characteristics were found to be B2-structured proeutectic dendrites delineated by lamellar or rod-like B2/A2 eutectic structures. The formation of this microstructural feature can be discussed with the aid of Scheil's solidification model. The proeutectic B2-structured dendrites were frequently found to be fragmented, which may provide profuse effective nucleation sites, and hence promote equiaxed grain formation. Furthermore, we estimated the volume fraction ϕ values of equiaxed crystals at solidification front for various G - V combinations established in this paper, which can provide a theoretical basis for our experimental findings. The current work provides guidelines for producing fully equiaxed alloys by the additive manufacturing (AM) process.
Original language | English |
---|---|
Article number | 108202 |
Journal | Materials and Design |
Volume | 184 |
DOIs | |
Publication status | Published - 15 Dec 2019 |
Externally published | Yes |
Keywords
- Additive manufacturing
- AlCoCrFeNiTi high entropy alloy
- Dendrite fragmentation
- Equiaxed grain formation
- Eutectic reaction
- Nucleation