TY - GEN
T1 - Footstep energy harvesting using heel strike-induced airflow for human activity sensing
AU - Fu, Hailing
AU - Cao, Kun
AU - Xu, Ruize
AU - Bhouri, Mohamed Aziz
AU - Martinez-Botas, Ricardo
AU - Kim, Sang Gook
AU - Yeatman, Eric M.
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/7/18
Y1 - 2016/7/18
N2 - Body sensor networks are increasingly popular in healthcare, sports, military and security. However, the power supply from conventional batteries is a key bottleneck for the development of body condition monitoring. Energy harvesting from human motion to power wearable or implantable devices is a promising alternative. This paper presents an airflow energy harvester to harness human motion energy from footsteps. An air bladder-turbine energy harvester is designed to convert the footstep motion into electrical energy. The bladders are embedded in shoes to induce airflow from foot-strikes. The turbine is employed to generate electrical energy from airflow. The design parameters of the turbine rotor, including the blade number and the inner diameter of the blades (the diameter of the turbine shaft), were optimized using the computational fluid dynamics (CFD) method. A prototype was developed and tested with footsteps from a 65 kg person. The peak output power of the harvester was first measured for different resistive loads and showed a maximum value of 90.6 mW with a 30.4 Ω load. The harvested energy was then regulated and stored in a power management circuit. 14.8 mJ was stored in the circuit from 165 footsteps, which means 90 μJ was obtained per footstep. The regulated energy was finally used to fully power a fitness tracker which consists of a pedometer and a Bluetooth module. 7.38 mJ was consumed by the tracker per Bluetooth configuration and data transmission. The tracker operated normally with the harvester working continuously.
AB - Body sensor networks are increasingly popular in healthcare, sports, military and security. However, the power supply from conventional batteries is a key bottleneck for the development of body condition monitoring. Energy harvesting from human motion to power wearable or implantable devices is a promising alternative. This paper presents an airflow energy harvester to harness human motion energy from footsteps. An air bladder-turbine energy harvester is designed to convert the footstep motion into electrical energy. The bladders are embedded in shoes to induce airflow from foot-strikes. The turbine is employed to generate electrical energy from airflow. The design parameters of the turbine rotor, including the blade number and the inner diameter of the blades (the diameter of the turbine shaft), were optimized using the computational fluid dynamics (CFD) method. A prototype was developed and tested with footsteps from a 65 kg person. The peak output power of the harvester was first measured for different resistive loads and showed a maximum value of 90.6 mW with a 30.4 Ω load. The harvested energy was then regulated and stored in a power management circuit. 14.8 mJ was stored in the circuit from 165 footsteps, which means 90 μJ was obtained per footstep. The regulated energy was finally used to fully power a fitness tracker which consists of a pedometer and a Bluetooth module. 7.38 mJ was consumed by the tracker per Bluetooth configuration and data transmission. The tracker operated normally with the harvester working continuously.
UR - http://www.scopus.com/inward/record.url?scp=84983468287&partnerID=8YFLogxK
U2 - 10.1109/BSN.2016.7516245
DO - 10.1109/BSN.2016.7516245
M3 - Conference contribution
AN - SCOPUS:84983468287
T3 - BSN 2016 - 13th Annual Body Sensor Networks Conference
SP - 124
EP - 129
BT - BSN 2016 - 13th Annual Body Sensor Networks Conference
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 13th Annual Body Sensor Networks Conference, BSN 2016
Y2 - 14 June 2016 through 17 June 2016
ER -