Facilitating Oriented Dense Deposition: Utilizing Crystal Plane End-Capping Reagent to Construct Dendrite-Free and Highly Corrosion-Resistant (100) Crystal Plane Zinc Anode

Huirong Wang, Anbin Zhou, Xin Hu, Zhihang Song, Botao Zhang, Shengyu Gao, Yongxin Huang*, Yanhua Cui, Yixiu Cui, Li Li, Feng Wu, Renjie Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Dendrite growth and corrosion issues have significantly hindered the usability of Zn anodes, which further restricts the development of aqueous zinc-ion batteries (AZIBs). In this study, a zinc-philic and hydrophobic Zn (100) crystal plane end-capping reagent (ECR) is introduced into the electrolyte to address these challenges in AZIBs. Specifically, under the mediation of 100-ECR, the electroplated Zn configures oriented dense deposition of (100) crystal plane texture, which slows down the formation of dendrites. Furthermore, owing to the high corrosion resistance of the (100) crystal plane and the hydrophobic protective interface formed by the adsorbed ECR on the electrode surface, the Zn anode demonstrates enhanced reversibility and higher Coulombic efficiency in the modified electrolyte. Consequently, superior electrochemical performance is achieved through this novel crystal plane control strategy and interface protection technology. The Zn//VO2 cells based on the modified electrolyte maintained a high-capacity retention of ≈80.6% after 1350 cycles, corresponding to a low-capacity loss rate of only 0.014% per cycle. This study underscores the importance of deposition uniformity and corrosion resistance of crystal planes over their type. And through crystal plane engineering, a high-quality (100) crystal plane is constructed, thereby expanding the range of options for viable Zn anodes.

Original languageEnglish
Article number2407145
JournalAdvanced Materials
Volume36
Issue number41
DOIs
Publication statusPublished - 10 Oct 2024

Keywords

  • crystal plane engineering
  • dense Zn anodes
  • end-capping reagent
  • high corrosion resistance
  • oriented deposition

Fingerprint

Dive into the research topics of 'Facilitating Oriented Dense Deposition: Utilizing Crystal Plane End-Capping Reagent to Construct Dendrite-Free and Highly Corrosion-Resistant (100) Crystal Plane Zinc Anode'. Together they form a unique fingerprint.

Cite this