Abstract
Pyrolytic carbon (PyC) interphase plays a crucial role in the mechanical properties of fiber-reinforced ceramic matrix composites. In this research, a novel micro-stack PyC interphase with different PyC textures was designed and fabricated by changing the deposition parameters during the chemical vapor infiltration process. The growth mechanism of the micro-stack PyC interphase with different texture were also studied by experimental characterizations and kinetic calculations, and the results show that the content ratio of (C2H2 + C2H4) to C6H6 gas intermediate is a key parameter to control the texture types of PyC interphase. Furthermore, the value of orientation angle (OA) value, thickness, and modulus of the micro-stack PyC interphase were further characterized by high resolution TEM (HRTEM), scanning electronic microscopy, and nanoindentation. Finally, the tensile testing of mini-Cf/PyC/SiC composites was conducted, and the results showed that the tensile strength of mini-Cf/PyC/SiC composites with micro-stack PyC interphase is approximately 40% higher than that containing single high texture PyC interphase. The improvements on the tensile strength of Cf/PyC/SiC composites prove the significant advantages of micro-stack PyC interphase.
Original language | English |
---|---|
Pages (from-to) | 7400-7410 |
Number of pages | 11 |
Journal | Journal of the American Ceramic Society |
Volume | 106 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2023 |
Keywords
- PyC growth model
- PyC texture
- mechanical properties
- micro-stack PyC interphase