Abstract
Hydrothermal synthesis and annealing process were used to create a honeycomb-structured composite electrode material on nickel foam substrate that contained praseodymium oxide (Pr2O3), cobalt oxide (Co3O4), and reduced graphene oxide (rGO) (named as Pr2O3/Co3O4/rGO/NF). The Pr2O3/Co3O4/rGO/NF (PCGN) composite electrode material was created without the need for a binder and can be employed right away to create a supercapacitor. This honeycomb composite is further grown by the mesh structure of Pr2O3 and Co3O4, which has good electrical conductivity. This nanomorphology not only improves the specific surface area of the material but also facilitates the improvement of electron transfer efficiency. The synthesized electrode material has excellent electrochemical properties due to its special morphology and excellent conductivity, and its performance is better than that of praseodymium oxide and cobalt oxide alone, with a specific capacitance of 3316 F g−1 in the three-electrode system at a current density of 1 A g−1. After forming a symmetrical supercapacitor device, the energy density is 74.8 W h kg−1 and the power density is 300 W kg−1 at 0.5 A g−1.
Original language | English |
---|---|
Pages (from-to) | 211-219 |
Number of pages | 9 |
Journal | New Journal of Chemistry |
Volume | 47 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2 Dec 2022 |