Abstract
Magnetically isotropic bonded magnets with a high loading fraction of 70 vol.% Nd-Fe-B are fabricated via an extrusion-based additive manufacturing, or 3D printing system that enables rapid production of large parts. The density of the printed magnet is ∼ 5.2 g/cm 3 . The room temperature magnetic properties are: intrinsic coercivity H ci = 8.9 kOe (708.2 kA/m), remanence B r = 5.8 kG (0.58 T), and energy product (BH)max = 7.3 MGOe (58.1 kJ/m 3 ). The as-printed magnets are then coated with two types of polymers, both of which improve the thermal stability as revealed by flux aging loss measurements. Tensile tests performed at 25 °C and 100 °C show that the ultimate tensile stress (UTS) increases with increasing loading fraction of the magnet powder, and decreases with increasing temperature. AC magnetic susceptibility and resistivity measurements show that the 3D printed Nd-Fe-B bonded magnets exhibit extremely low eddy current loss and high resistivity. Finally, we demonstrate the performance of the 3D printed magnets in a DC motor configuration via back electromotive force measurements.
Original language | English |
---|---|
Pages (from-to) | 495-500 |
Number of pages | 6 |
Journal | Additive Manufacturing |
Volume | 21 |
DOIs | |
Publication status | Published - May 2018 |
Externally published | Yes |
Keywords
- Big area additive manufacturing
- Eddy current loss
- High resistivity
- Magnetic properties
- Mechanical properties