Fabrication of an ultra-stable composite electrode material of La2O3/Co3O4/graphene on nickel foam for high-performance supercapacitors

Zijing Wang, Shixiang Lu*, Wenguo Xu*, Ziwen Wang, Hao Zuo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Stable electrode materials with suitable electrochemical performance and high specific power are essential for the application of supercapacitors. A combination of La2O3, Co3O4, and graphene on nickel foam (LCGN) was prepared by hydrothermal synthesis and heat treatment to construct a three-dimensional flower-like structure. The synergistic effect between La2O3, Co3O4, and graphene dramatically improves the electrode stability. Owing to the special three-dimensional flower-like structure that improves ion diffusion and prevents structural collapse during charging and discharging, the prepared LCGN composite exhibits an excellent specific capacitance of 2945.11 F g−1 (2.95 F cm−2) at a current density of 1 A g−1 and excellent rate retention of 79.20% at 30 A g−1. Moreover, the LCGN//LCGN symmetric supercapacitor shows excellent performance with a specific capacitance of 403.92 F g−1 at 1 A g−1, with power density and energy density (12 000 W kg−1 at 53.9 W h kg−1), reflecting its industrial potential. Under the condition of 10 A g−1 current density, the capacitance retention rate is still extremely high, 89.3% after 30 000 continuous charge and discharge cycles, which certifies the promising potential of LCGN for high-performance energy storage devices.

Original languageEnglish
Pages (from-to)7202-7211
Number of pages10
JournalNew Journal of Chemistry
Volume46
Issue number15
DOIs
Publication statusPublished - 15 Mar 2022

Fingerprint

Dive into the research topics of 'Fabrication of an ultra-stable composite electrode material of La2O3/Co3O4/graphene on nickel foam for high-performance supercapacitors'. Together they form a unique fingerprint.

Cite this