Abstract
Compared to remote sensing images of medium or low spatial resolution, high-resolution remote sensing images can provide observation data containing more detailed information for georesearch. Accordingly, an important issue for current computer and geoscience experts is to develop useful methods or technology to extract information from these high-resolution satellite images. As part of a series of research into object extraction, this paper focuses mainly on the extraction of bridges over water from high-resolution panchromatic satellite images. Since bridges over water are obviously adjacent to water in remote sensing images, this paper proposes a practical knowledge-based bridge extraction method for remote sensing images of high spatial resolution. The steps involved are: water extraction based on Gauss Markov Random Field (GMRF)-Support Vector Machine (SVM) classification methods which use a SVM to classify the image based on textural features expressed by a GMRF; image thinning and removal of fragmented lines; main trunk detection by width; vectorization; and feature expression. Finally, tests are described for two pieces of panchromatic IKONOS satellite images with a 1 m resolution. The experimental results show that the proposed method is suitable for images with a single-peak histogram (contrast between water and land is sharp) or a multi-peak histogram (greyscale value of water is close to that of land).
Original language | English |
---|---|
Pages (from-to) | 3633-3648 |
Number of pages | 16 |
Journal | International Journal of Remote Sensing |
Volume | 28 |
Issue number | 16 |
DOIs | |
Publication status | Published - Jan 2007 |