Extensible automated dispersive liquid-liquid microextraction

Songqing Li, Lu Hu, Ketao Chen, Haixiang Gao*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

In this study, a convenient and extensible automated ionic liquid-based in situ dispersive liquid-liquid microextraction (automated IL-based in situ DLLME) was developed. 1-Octyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide ([C8MIM]NTf2) is formed through the reaction between [C8MIM]Cl and lithium bis[(trifluoromethane)sulfonyl]imide (LiNTf2) to extract the analytes. Using a fully automatic SPE workstation, special SPE columns packed with nonwoven polypropylene (NWPP) fiber, and a modified operation program, the procedures of the IL-based in situ DLLME, including the collection of a water sample, injection of an ion exchange solvent, phase separation of the emulsified solution, elution of the retained extraction phase, and collection of the eluent into vials, can be performed automatically. The developed approach, coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD), was successfully applied to the detection and concentration determination of benzoylurea (BU) insecticides in water samples. Parameters affecting the extraction performance were investigated and optimized. Under the optimized conditions, the proposed method achieved extraction recoveries of 80% to 89% for water samples. The limits of detection (LODs) of the method were in the range of 0.16-0.45ngmL-1. The intra-column and inter-column relative standard deviations (RSDs) were <8.6%. Good linearity (r>0.9986) was obtained over the calibration range from 2 to 500ngmL-1. The proposed method opens a new avenue for automated DLLME that not only greatly expands the range of viable extractants, especially functional ILs but also enhances its application for various detection methods. Furthermore, multiple samples can be processed simultaneously, which accelerates the sample preparation and allows the examination of a large number of samples.

Original languageEnglish
Pages (from-to)46-54
Number of pages9
JournalAnalytica Chimica Acta
Volume872
DOIs
Publication statusPublished - 4 May 2015
Externally publishedYes

Keywords

  • Automated dispersive liquid-liquid microextraction
  • Benzoylurea insecticides
  • Fully automatic SPE workstation
  • Ionic liquid
  • Nonwoven polypropylene fiber

Fingerprint

Dive into the research topics of 'Extensible automated dispersive liquid-liquid microextraction'. Together they form a unique fingerprint.

Cite this