TY - JOUR
T1 - Extending the π-Conjugation of a Donor-Acceptor Covalent Organic Framework for High-Rate and High-Capacity Lithium-Ion Batteries
AU - Li, Chengqiu
AU - Yu, Ao
AU - Zhao, Wen Kai
AU - Long, Guankui
AU - Zhang, Qichun
AU - Mei, Shilin
AU - Yao, Chang Jiang
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024
Y1 - 2024
N2 - Realizing high-rate and high-capacity features of Lihium-organic batteries is essential for their practical use but remains a big challenge, which is due to the instrinsic poor conductivity, limited redox kinetics and low utility of organic electrode mateials. This work presents a well-designed donor-acceptor Covalent Organic Framework (COFs) with extended conjugation, mesoscale porosity, and dual redox-active centers to promote fast charge transfer and multi-electron processes. As anticipated, the prepared cathode with benzo [1,2-b:3,4-b′:5,6-b′′] trithiophene (BTT) as p-type and pyrene-4,5,9,10-tetraone (PTO) as n-type material (BTT-PTO-COF) delivers impressive specific capacity (218 mAh g−1 at 0.2 A g−1 in ether-based electrolyte and 275 mAh g−1 at 0.2 A g−1 in carbonate-based electrolyte) and outstanding rate capability (79 mAh g−1 at 50 A g−1 in ether-based electrolyte and 124 mAh g−1 at 10 A g−1 in carbonate-based electrolyte). In addition, the potential of BTT-PTO-COF electrode for prototype batteries has been demonstrated by full cells of dual-ion (FDIBs), which attain comparable electrochemical performances to the half cells. Moreover, mechanism studies combining ex situ characterization and theoratical calculations reveal the efficient dual-ion storage process and facile charge transfer of BTT-PTO-COF. This work not only expands the diversity of redox-active COFs but also provide concept of structure design for high-rate and high-capacity organic electrodes.
AB - Realizing high-rate and high-capacity features of Lihium-organic batteries is essential for their practical use but remains a big challenge, which is due to the instrinsic poor conductivity, limited redox kinetics and low utility of organic electrode mateials. This work presents a well-designed donor-acceptor Covalent Organic Framework (COFs) with extended conjugation, mesoscale porosity, and dual redox-active centers to promote fast charge transfer and multi-electron processes. As anticipated, the prepared cathode with benzo [1,2-b:3,4-b′:5,6-b′′] trithiophene (BTT) as p-type and pyrene-4,5,9,10-tetraone (PTO) as n-type material (BTT-PTO-COF) delivers impressive specific capacity (218 mAh g−1 at 0.2 A g−1 in ether-based electrolyte and 275 mAh g−1 at 0.2 A g−1 in carbonate-based electrolyte) and outstanding rate capability (79 mAh g−1 at 50 A g−1 in ether-based electrolyte and 124 mAh g−1 at 10 A g−1 in carbonate-based electrolyte). In addition, the potential of BTT-PTO-COF electrode for prototype batteries has been demonstrated by full cells of dual-ion (FDIBs), which attain comparable electrochemical performances to the half cells. Moreover, mechanism studies combining ex situ characterization and theoratical calculations reveal the efficient dual-ion storage process and facile charge transfer of BTT-PTO-COF. This work not only expands the diversity of redox-active COFs but also provide concept of structure design for high-rate and high-capacity organic electrodes.
KW - COFs
KW - Dual-Ion cathode
KW - Lithium Batteries
UR - http://www.scopus.com/inward/record.url?scp=85205606398&partnerID=8YFLogxK
U2 - 10.1002/anie.202409421
DO - 10.1002/anie.202409421
M3 - Article
AN - SCOPUS:85205606398
SN - 1433-7851
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
ER -